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Abstract

Orthogonal polynomials within the realm of bounded linear operators on

a Hilbert space (B(H)) hold a crucial role in operator theory, functional

analysis, and various other fields. While significant research has been con-

ducted on orthogonal polynomials and norm-attainable operators, there

remains a notable gap in the literature regarding the characterization of

orthogonal polynomials in (NA(H)) and the relationship between orthog-

onal polynomials and norm-attainable operators. This study aims to ad-

dress this knowledge gap by characterizing norm-attainable operators, or-

thogonal polynomials in NA(H), and establishing their relationship.The

research utilizes diverse methodologies such as norm-attainability cri-

teria, Gram-Schmidt orthonormalization, determination of Gram ma-

trix determinants, and exploration of properties associated with classi-

cal continuous orthogonal polynomials. The results of the study demon-

strate that Harmite, Laguerre, Legendre, and Jacobi polynomials are

norm-attainable in B(H), and a Hermitian contraction operator is norm-

attainable if its ∥T∥ or −∥T∥ norm lies within its spectrum. Furthermore,

it is revealed that orthogonal polynomials exhibit convexity, positivity,

and form a normed vector space. Additionally, a self-adjoint closed dif-

ferential operator on the L2([0, 1]) space, which is not bounded and hence

not norm-attainable, is identified. This study holds significance as it en-

hances our comprehension of norm-attainable operators and orthogonal

polynomials within the B(H) space. The findings have practical applica-

tions in signal processing, data analysis, and harmonic analysis, particu-

larly in the development of Fourier series, wavelength determination, and

the L2-boundedness of singular integral operators.
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Chapter 1

INTRODUCTION

1.1 Mathematical background

Exploring Hilbert space operators has captivated mathematicians. Re-

cent research has unveiled a compelling insight: certain compact linear

operators, when situated between Banach spaces, resist approximation

by norm-attainable (NA) operators [14], [18], [32], [56] , [63] and [83].

Martin’s work [63] explored norm-attainability for bounded linear oper-

ators in reflexive spaces, leveraging Diestel’s earlier result [26] that es-

tablished the existence of non-norm-attainable continuous linear func-

tionals in norm reflexive Banach spaces. Shkredov introduced the con-

cept of norm-attainable operators (NA) in Banach spaces [87]. Banach

spaces failing certain conditions can have bounded ranks that are not

NA [87]. Norm-attainability is further linked to operators with proper-

ties like weakly sequentially continuous norm functions and closed sets

with weakly sequential compactness [56]. [56] also introduced Property

B, which involves analyzing L(X ′, Y ′) and NA(X ′, Y ′) spaces [56]. When

NA(X ′, Y ′) is densely embedded within L(X ′, Y ′), Banach space Y ex-
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hibits property B [56].

Notably, under specific conditions, NA(X ′, Y ′) does not form a dense

subset of L(X, Y ) [2] and [14]. Agu [3] suggested that strict convexity

within an infinite-dimensional Banach space is incompatible with prop-

erty B. The Bishops-Phelps theorem [14] emphasizes that the dual space

of norm-attainable functionals on a Banach space is densely populated

under norm topology. Lindentrauss’s work [56] further contributes to the

understanding of property B. Bott, Harr, and Shag pioneered the intro-

duction of ε-pseudospectrum for norm attainability of operators [15] and

[88]. Shag [88] demonstrated that the interior of the quotient space of the

ε-pseudospectrum can be non-empty in general. Gall conducted further

studies on ε-pseudospectrum. Shk [87] analyzed norm attainability con-

ditions on Banach spaces and established that the operator (1 + T ) can

achieve norm attainability on Banach spaces derived from ℓp-direct sums

of finite-dimensional Banach spaces, within the range of 1 < p < ∞,”

provided certain conditions are met. Shag constructed a reflexive Banach

space X with a bounded rank-one operator T such that |1 + T | > 1, but

1 + T is not norm-attainable [88].

The study by authors [14] on norm-attainable operators sparked ques-

tions about the density of these operators in the space B(X ′, Y ′) for

Banach spaces X ′ and Y ′. Author [56] addressed this, linking it to ex-

treme points in the closed unit ball Ux of X. Notably, for certain spaces

Y , norm-attainable operators in B(L′(0, 1), Y ) aren’t dense because Ux

of L′(0, 1) lacks extreme points. This raises the question: ”When are

norm-attainable operators dense in B(L′(0, 1), Y )?”. Building on [56], if

the closed unit ball Ux of Y exhibits extreme or exposed points, norm-
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attainable operators may be dense in B(L′(0, 1), Y ). Researchers [25], [43]

and [82], established a connection between the Radon-Nikodym property

and extreme points. Therefore, it’s plausible that norm-attainable op-

erators are dense in B(L′(0, 1), Y ) if and only if Y possesses the Radon-

Nikodym property. A proposal by [45] suggests exploring this claim, espe-

cially within strictly convex Banach spaces. Lindenstrauss [56] established

that the density of norm-attainable operators in Banach spaces extends

beyond just those with extreme points in their closed unit balls. This re-

sult is significant in Banach space theory. The Radon-Nikodym property,

which ensures weak compactness of bounded linear operators into L∞(µ),

is a key condition for this extension. This property holds considerable

importance in functional analysis, with broad-reaching implications. The

density of norm-attainable operators is valuable in applications, allow-

ing for the approximation of bounded linear operators by sequences of

norm-attainable ones. This has applications in approximation theory, op-

timization, and more. Ongoing research explores this density in various

Banach space settings, often relying on structural properties of closed unit

balls, such as extreme and exposed points.

In [62], the author introduced an example of an operator between Banach

spaces X and Y that cannot be approximated by norm-attaining opera-

tors (NA operators). This challenges the assumption that all operators

between Banach spaces can be approximated effectively using NA oper-

ators [1], [14], [28], [27] and [56]. The concept of norm-attainability in

operator theory has been studied by many authors, including [18], [84] and

[86]. In [86], the authors refuted the characterization theorem proposed

by Ramesh [84] and provided a full characterization of the class of positive

3



absolutely norm-attainable operators. Their result contradicted the ear-

lier assumption of separability, making it more general. They were able to

establish the correct characterization for absolutely norm-attainable op-

erators on complex Hilbert spaces of arbitrary dimensions. Their findings

indicated that the class of NA operators on closed subspaces is not closed

under addition. However, the intersection of this class with the set of

positive operators generated the class of Hermitian operators in the real

Banach space. These developments have contributed to a deeper under-

standing of the properties and structures of operators in Banach spaces.

Additionally, the notion of norm-attainability has been explored in op-

erator theory, with researchers in this field deriving norm estimates and

establishing conditions for Hilbert spaces in a study referenced as [70]. An

in-depth analysis of elementary operators was done in [29]. The character-

ization of norm-attainable elementary operators with respect to orthogo-

nality was done in [72], [76] and [78]. These studies have contributed to a

deeper understanding of the properties and structures of operators in Ba-

nach spaces. The properties of the vector spaces on which an operator acts

significantly influence the description of the operator. Different notions

of norm-attainability have been discussed in the literature, including the

notion of norm-attainability for non-power operators on reflexive, linear

functionals in Banach spaces, dense, separable infinite dimensional com-

plex H (Hilbert) spaces and elementary operators. The work of [6], [18],

[52], [69] and [79], and have contributed to the exploration of orthogonal-

ity, completely positive and completely bounded maps, norm-attainable

operators, and their interplay within the frameworks of normed spaces,

Banach spaces, Hilbert spaces, and operator theory. The class of abso-
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lutely norm-attainable operators between Hilbert spaces has been studied.

Studies on this class have revealed a lot of examples and properties of such

operators. Okelo analyzed these operators in connection with other opera-

tor properties like hyponormality and compactness. The spectral analysis

of compact hyponormal norm-attainable operators showed that such op-

erators have countable spectrum. A bounded linear compact hyponormal

operator in an infinite-dimensional complex Hilbert space satisfies the nec-

essary and sufficient condition for being absolutely norm-attainable when

the cardinality of the set of its eigenvalues is finite [18], [72] and [71]. The

Bram-Halmos subnormality criterion [16], [22] and [23] is a condition that

must be satisfied by an operator T for it to be subnormal. The authors

of the criterion also introduced the concept of weak k-hyponormality for

hyponormal operators and defined other types of hyponormality such as

quadratic, cubic and polynormal and hyponormality. Bishop-Phelps ini-

tiated the investigations of the subspaces of norm-attainable operators

[14], and Jun Ik Lee specialized on the subspaces of such special norm-

attainable operators (paranormal, hyponormal etc.) and showed that the

norm-attainable paranormal operators have nontrivial invariant subspaces

[47]. The conditions necessary and sufficient for norm-attainability have

been extensively explored in previous works, such as the notable papers

[51] and [72]. These conditions go beyond norm-attainability alone and

delve into the conditions for elementary operators and generalized deriva-

tions. The results obtained in these studies shed light on the intricate

relationships between these operators and their attainability in terms of

norms. Okelo’s work, published in [69], contributes to the field by offering

a comprehensive characterization and generalization of the conditions for
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norm-attainability of Hilbert space operators. Okelo’s insights provide

valuable insights into the various factors influencing the attainability of

norms in this context. Additionally, the authors of [79] delved into the

topic of orthogonal extensions, focusing on the orthogonality properties of

range and kernel of elementary operators implemented by norm-attainable

operators in Banach spaces. Their study yielded significant results, in-

cluding norm-attainable operator-valued orthogonal extensions of matrix

inequalities and conditions for the weak convergence of operators in the

context of NA(H). Mathieu’s work [64] explored the computation of

norms of elementary operators on the Calkin algebra. Okelo, Agure, and

Ambogo [77] made noteworthy contributions to the characterization of

NA operators. Okelo’s work [71] provided valuable characterizations of

the absolute norm-attainability of compact hyponormal operators. Okelo

[69] explored the properties of compact hyponormal operators, particu-

larly when they are self-adjoint or normal, as well as their commutators.

The theory of orthogonal polynomials can be traced back to the pioneer-

ing works of Stieltjes and Chebyshev [20]. Chebyshev introduced the first

kind of polynomials, known as (Tn) polynomials [20]. Legendre polyno-

mials were introduced by Legendre himself and later extended by Jacobi

[36], leading to the development of Jacobi polynomials. Hermite defined

the Hermite polynomial to facilitate the study of expansion series in R

[36]. The research presented in [67] introduced a novel system of orthog-

onal polynomials, which exhibited connections to the Meixner-Pollaczek

polynomials. The newfound system of orthogonal polynomials was sub-

sequently utilized to investigate the boundedness properties of singular

integral operators of convolution type [67]. The relationship between
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non-negative linearization property and some maximum principle of cer-

tain boundary value problem was shown in [92]. Sufficient conditions

on orthogonal polynomial system to satisfy the non-negative lineariza-

tion was also established. The factorization of monic polynomials, where

the coefficients are linear bounded operators, is an important subject in

mathematics with numerous significant findings [85]. Factorization of

such polynomials into a product of several operator polynomial is also

important and has been studied by mathematicians such as M.G. Krein,

H. Langer, Gohbery, Kaasoek, and Rodman. This problem has several

results in connection with oscillations of continua, see [38], [40] and [59].

Herrero [42] considered the problem of factorization of operator polyno-

mials when the coefficient operators are biquasitriangular in nature using

approximation criterion. The results in [42] showed that the condition

necessary for an operator polynomial to be biquasitriangular is that its

Fredholm index must be zero. Rodman [85] conducted a comprehensive

study on the density of operator polynomials. One of the key findings of

this research was the proof that a diverse set of biquasitriangular poly-

nomials, capable of being factored into monic linear terms, exists within

the entire range of biquasitriangular monic operator polynomials. This

result suggests that the ability to factorize into monic linear factors is

not limited to specific cases but is rather widely prevalent. Mache and

Rasa [58] initiated the field of positive polynomial operators, aiming to

establish a connection between two well-known operators: the Durrmeyer

operators employing Jacobi weights with a parameter value of α = 0,

and the Bernstein operators as the parameter α tends towards infinity.

Mache [58] analyzed such operators pn, especially their relationship with

7



Durrmeyer, Bernstein and other operators. Stancu [89] introduced a rela-

tively smaller sequence of such positive polynomials operators which was

denoted by Vn. Mache [58] associated the sequence pn with the simple

sequence Vn, by representing a link between Bernstein polynomials and

certain Stancu polynomials. Furthermore, [58] established the relation-

ship between them. Laplace made notable contributions to the study of

polynomials in probability theory [53]. Laguerre polynomials were in-

troduced by Laguerre himself and gained recognition in the publication

[53]. Chebyshev polynomials are central in approximation theory, as high-

lighted in the research conducted by Balogh and Bertola [9]. They ex-

plored the association between Chebyshev polynomials and a compact set

K ⊆ C. Remarkably, when considering monic polynomials of degree n,

the Chebyshev polynomials emerge as minimizers of the supremum norm

over K. This property makes them valuable tools for approximating func-

tions and representing them through polynomial expansions. Balogh and

Bertola [9] also considered weighted Chebyshev polynomials with varying

weight functions, denoted as wn. These weight functions were analyzed

as factors influencing the supremum norm of weighted polynomials Qnw
n

over a specific subset
∑

⊆ C. The researchers imposed certain standard

admissibility conditions on the weight function w, as outlined in the ref-

erence [31].

Szegő [91] emphasized the significance of orthogonal polynomials as a

valuable tool for analyzing fundamental problems. Various applications

such as moment problems, rational and polynomial approximation, inter-

polation, and numerical quadrature rely on the fundamental properties of

orthogonal polynomials. Understanding the theory of general orthogonal

8



and extremal polynomials becomes essential, as it is closely linked to the

classical research of Bernstein [13] regarding the asymptotic behavior of Lp

extremal polynomials. Benitez [12] conducted an examination of different

types of orthogonality in real normed spaces. The authors [38], [39], [59]

and [60] investigated the existence of monic operator polynomials with

right divisors. They determined the minimum degree required for these

multiple polynomials and examined the roles played by various properties

of the divisors. They also ventured into exploring the infinite-dimensional

case, which posed new technical challenges and yielded significantly dif-

ferent results compared to their previous work. In their analysis, they

made use of a generalized Vandermonde operator matrix, which need not

be square for it to be of utmost importance. They demonstrated that the

invertibility of the Vandermonde matrix, as well as some form of gener-

alized invertibility, played crucial roles in the analysis.

In summary, despite previous attempts to characterize orthogonal polyno-

mials and norm-attainable operators, the characterization of orthogonal

polynomials in NA(H) (the space of norm-attainable operators) and the

relationship between the two remains an open question. This study aims

to bridge that knowledge gap by investigating and shedding light on this

unexplored territory.

1.2 Basic concepts

We have included some fundamental definitions and notations that are

pertinent to our research in this section.

Definition 1.1. ([51], Definition 1.2) A norm or length function on a

9



vector space V ′ can be formally defined as a mapping ∥ · ∥ : V ′ → R that

satisfies the following three key properties:

1. Non-negativity: For all vectors x′ in V ′, ∥x′∥ is a nonnegative real

number: ∥x′∥ ≥ 0 Moreover, ∥x′∥ = 0 if and only if x′ is the zero

vector.

2. Homogeneity: For all vectors x′ in V ′ and all scalars α in R, the

norm scales with the absolute value of the scalar: ∥αx′∥ = |α|∥x′∥

3. Triangle Inequality: For all vectors x′ and y′ in V ′, the norm of

the sum of these vectors is bounded by the sum of their individual

norms: ∥x′ + y′∥ ≤ ∥x′∥ + ∥y′∥

Definition 1.2. ([68], Definition 3.1) An inner product on a vector space

V ′ over the field F ( R or C) is a function ⟨·, ·⟩ : V ′ × V ′ → F satisfying

the following properties:

1. Positive-definiteness: For all vectors v′ ∈ V ′, ⟨v′, v′⟩ ≥ 0, with

equality only if v′ = 0.

2. Conjugate symmetry: For all vectors v′, w′ ∈ V ′, ⟨v′, w′⟩ =

⟨w′, v′⟩.

3. Linearity in the first argument: For all vectors v′, w′ ∈ V ′ and

scalars α, β ∈ F, ⟨αv′ + βw′, u′⟩ = α⟨v′, u′⟩ + β⟨w′, u′⟩.

Example 1.3. Consider complex vectors z′ and w′ with n′ components

in the space Cn. The inner product between z′ and w′ is calculated by

taking the sum of the products of their corresponding components. This

inner product is denoted as ⟨z′, w′⟩. Similarly, in the space of continuous

10



functions C[0, 1], the inner product between two functions g′ and h′ de-

fined on the interval [0, 1] is obtained by integrating the product of g′(x)

and the complex conjugate of h′(x) over the interval [0, 1]. This inner

product is represented as ⟨g′, h′⟩. In summary, this example outlines the

definition of inner products for complex vectors in Cn and continuous

functions in C[0, 1].

Definition 1.4. ([51], definition 1.5) An operator T ′ in B(H) is said to

be non-attainable (NA) if there exists a unit vector x′0 in H such that

∥T ′x′0∥ = ∥T ′∥.

Remark 1.5. In this definition, ∥T ′x′0∥ represents the norm (or magni-

tude) of the image of the unit vector x′0 under the operator T ′, and ∥T ′∥

represents the norm of the operator T ′ itself. If the norm of T ′x′0 is equal

to the norm of T ′, then the operator T ′ is considered non-attainable.

Definition 1.6. ([4], definition 2.1) Let T ′ : H ′
1 → H ′

2 be a linear opera-

tor. The operator norm of T ′ is defined as

∥T ′∥ = inf{c ∈ R : ∥T ′x′∥ ≤ c∥x′∥ for all x′ ∈ H ′
1}.

In other words, the operator norm of T ′ is the smallest real number c such

that the norm of T ′x′ is always less than or equal to c times the norm of

x′, for all vectors x′ in H ′
1.

Example 1.7. Taxicab norm (C ′
1): For p = 1 then ∥T ′∥1 = (

∑∞
j=1 s

′
j(T

′))

and ∥|T ′|2∥ 1
2

= ∥T ′∥21. The class of all operators which admit the norm

∥T ′∥1 = (
∑∞

j=1 s
′
j(T

′)) is called Trace class and is denoted by C ′
1.

Example 1.8. Let us consider the Hilbert-Schmidt Operators for the

case when p = 2. Then ∥T ′∥2 = (
∑∞

j=1 s
2
j(T

′))
1
2 and ∥|T ′|2∥ 1

2
= ∥T ′∥21.
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The class of all operators which admit the norm ∥T ′∥2 = (
∑∞

j=1 s
2
j(T

′))
1
2

is called Hilbert-Schmidt norm and is denoted by C ′
2.

Definition 1.9. ([80], definition 4.1) For T ′ ∈ B(H′)

(i). Uniform convergence: limn→∞ ∥T ′
n − T ′∥ = 0

(ii). Strong convergence: limn→∞ ∥(T ′
n − T ′)x′∥ = 0, ∀ x′ ∈ H′

(iii). Weak convergence: limn→∞⟨(T ′
n − T ′)x′, y′⟩ = 0, ∀ x′, y′ ∈ H′

Moreover, a sequence Tn
′ is considered bounded if there exists a finite

number such that the norms of all the operators in the sequence do not

exceed that value.

Remark 1.10. It is worth noting that if a sequence converges uniformly

to an operator, it automatically implies strong and weak convergence.

Additionally, if the norms of the operators in a sequence are bounded,

then the sequence itself is also considered bounded.

Definition 1.11. ([5], Definition 4.12) Let T ′ ∈ B(H′), then the spec-

trum of T ′ denoted as σ(T ′), if defined as σ(T ′) = {λ ∈ C : λ′I − T ′is

not invertible}. On the other hand, if (T ′ − λ′I) is invertible, then λ′ is

referred to as the resolvent of T ′, that is, ρ(T ′) = C\σ(T ′).

Definition 1.12. ([68], Definition 1.3 ) Let T ′ : V ′ → W ′ be a linear

transformation. The image of T ′ is the set of all vectors in W ′ that can

be written as T ′(v′) for some vector v′ in V ′. It is denoted by im(T ′):

im(T ′) = {w′ ∈ W ′ | w′ = T ′(v′) for some v′ ∈ V ′}
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The kernel of T ′ is the set of all vectors in V ′ that are mapped to the zero

vector by T ′. It is denoted by ker(T ′):

ker(T ′) = {v′ ∈ V ′ | T ′(v′) = 0}

The rank of T ′ is the dimension of the image of T ′, and the nullity of T ′

is the dimension of the kernel of T ′.

Definition 1.13. ([71], Definition 2.1 ) Let H ′
1 and H ′

2 be Hilbert spaces.

A linear operator T ′ : H ′
1 → H ′

2 is said to be bounded if there exists a

positive constant M ′ such that

||T ′x′||2 ≤M ′||x′||2

for all x′ ∈ H ′
1. Here, ||x′||2 denotes the norm of x′ in H ′

1, and M ′ is called

the operator norm of T ′.

Definition 1.14. ([71], Definition 2.2 ) Let H ′ be a Hilbert space. An

operator T ′ : H ′ → H ′ is said to have an adjoint, denoted by T ′∗ : H →

H ′, if it satisfies the condition

⟨T ′x′, y′⟩ = ⟨x′, T ′∗y⟩

for all vectors x′ and y′ in H ′. The adjoint operator T ′∗ is uniquely

determined by T ′. It can be constructed using the Riesz representation

theorem.

� An operator T ′ is said to be self-adjoint if T ′ = T ′∗.

� An operator T ′ is said to be normal if T ′T ′∗ = T ′∗T ′.
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� An operator T ′ is said to be hypernormal if ∥T ′∗x′∥ ≤ ∥T ′x′∥ for

all x′ ∈ H ′.

� An operator T ′ is said to be positive if ⟨T ′x′, x′⟩ ≥ 0 for all x′ ∈ H ′.

� An operator T ′ is said to be symmetric if ⟨T ′x′, y′⟩ = ⟨x′, T ′y′⟩ for

all x′ and y′ in H ′.

Definition 1.15. ([79], Definition 5.1) Let H ′ be a Hilbert space and let

NA(H ′) be the operator algebra of all bounded linear operators on H ′.

Two operators T ′ and P in NA(H ′) are said to be orthogonal if their

inner product, denoted by ⟨T ′, P ′⟩, is zero. That is,

⟨T ′, P ′⟩ = T ′r(T ′∗P ′) = 0

where T ′r denotes the trace operator. A collection of operators T ′
j and

T ′
k (where j, k = 0, 1, . . .) are said to possess orthogonal extensions if

their inner products, denoted by ⟨T ′
j , T

′
k⟩, are all zero. That is,

⟨T ′
j , T

′
k⟩ = 0 ∀j, k

Remark 1.16. This definition establishes the notion of orthogonality

for operators within the operator algebra NA(H) and extends it to the

concept of orthogonal extensions between sets of operators.

Definition 1.17. ([95], definition 3.1) In the context of polynomials,

p is considered monic provided its leading coefficient equals to 1. More

precisely, if p is a polynomial represented as p(x) = xn+bnx
n−1+ . . ., then

p is monic. Moreover, a monic family of polynomials refers to a collection
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of polynomials in which every member of the collection is monic, meaning

each polynomial within the family has a leading coefficient of 1.

Definition 1.18. ([36], Examples 1-5)

(i). The Hermite polynomials denoted as Hn(x′) are a sequence of or-

thogonal polynomials defined on the entire real line (−∞,∞), and

with a weight function w′(xH) = e−x2
.

(ii). The Laguerre polynomials denoted as L
(α)
n (x′1) are a family of or-

thogonal polynomials defined on the interval (0,∞), and they are

related with a weight function w(x′1) = e−x′2x′
(−α)
1 .

(iii). Legendre polynomials Pn(x′1) are a family of orthogonal polyno-

mials defined on the interval (−1, 1), and their definition does not

involve a weight function; it is simply based on the interval limits.

(iv). Chebyshev polynomials is a class of orthogonal polynomials ϕn(xC)
∞
n=0

defined over the range from -1 to 1 with respect to a weight function

w(xC) = (1 − x2)−1/2.

(v). The Jacobi polynomials P
(α1,α2)
n (x) are orthogonal polynomials de-

fined on the interval (−1, 1), and they are related to a weight func-

tion w(x′1) = (1 − x′1)α1(1 + x′1)α2 .

Definition 1.19. ([88], Definition 3.2) f(x)(function) is considered con-

vex when given two points x and y in its domain and any scalar α between

0 and 1, the function value at the convex combination αx′ + y′(1 − α) ≤

the convex combination of the function values f ′(αx′) + (1−α)f ′(y′). On

the other hand, f ′(x′) is positive definite if, for any non-zero point x′, the

15



function value f ′(x′) is greater than zero. Lastly, f ′(x′) is termed strictly

convex provided for any two distinct points x′ and y′ in its domain and

any scalar α between 0 and 1, the function value at the convex combi-

nation αx′ + (1 − α)y′ is strictly less than the convex combination of the

function values f ′(αx′) + (1 − α)f ′(y′).

Definition 1.20. ([44], definition 1) A real polynomial is a mathematical

expression involving real numbers and variables, represented as P ′(x′) =

anx
n + an−1x

n−1 + . . . + a1x + a0. The coefficients a0, a1, . . . , an−1, an

are real numbers, with an being nonzero. The degree of the polynomial,

denoted by n, is a nonnegative integer that indicates the highest power

of the variable.

Definition 1.21. ([7], Definition 2.1) A polynomial with complex coeffi-

cients is a function that expressed as:

p′(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0, (1.2.1)

where ai ∈ C ∀i = 0, 1, . . . , n and z is a complex variable. n is the highest

power of z known as the degree of the polynomial and an ̸= 0.

Remark 1.22. In the context of polynomials, the degree of a polynomial

P is a nonnegative integer denoted by n. P is expressed by P (x) =

a0 + a1x+ . . .+ an−1x
n−1 + anx

n. The coefficient a0 is referred to as the

leading coefficient.

Definition 1.23. ([7], Definition 3.1) When we have a polynomial with

a degree of n ≥ 1 written as 4p(z) = anz
n + an−1z

n−1 + . . . + a1z + a0,

we say that a complex number z0 ∈ C is a root of the polynomial if the

polynomial equation evaluates to zero when z0 is substituted into it.
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Definition 1.24. ([7], Definition 3.3) In the context of polynomials, the

multiplicity of a root z0 corresponds to the greatest exponent of the term

(z− z0) that can be divided without remainder into the given polynomial

p(z). This concept applies to polynomials of degree n or higher, with

n being a positive integer. It is crucial to emphasize that the quotient

polynomial q(z) should not evaluate to zero when substituting z0 into it.

Remark 1.25. The term ”zero polynomial” refers to a polynomial whose

coefficients are all equal to zero, or (P (x) = 0), and whose degree is

”undefined.”

Definition 1.26. ([24], Definition 1) An orthogonal polynomial associ-

ated with a weight function on a given interval (a, b) can be described as a

sequence of polynomials, denoted as qn(x), each having a specific degree.

These polynomials possess a unique property: when the product of any

two polynomials in the sequence with different degrees is integrated over

the interval, the resulting value is zero. However, if the product involves

two polynomials with the same degree, the integral yields a non-zero con-

stant.

1.3 Statement of the problem

Orthogonal polynomials are a well-studied class of functions, but their re-

lationship to norm-attainability was not well understood until this study.

Norm-attainability is a property of operators that ensures that their

norms can be attained by elements of their domains. The goal of this

study was to fill the knowledge gap in this area by investigating norm-

attainable operators and establishing the norm-attainability conditions
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for orthogonal polynomials. By doing so, the study provides a compre-

hensive understanding of the relationship between orthogonal polynomials

and norm-attainable operators, offering valuable insights into the proper-

ties and behavior of orthogonal polynomials within the context of norm-

attainability.

1.4 Objectives of the study

1.4.1 Main objective

The main objective of this study was to characterize orthogonal polyno-

mials in norm-attainable classes.

1.4.2 Specific Objectives

To achieve the main objective, the specific objectives of the study were

to:

(i). Characterize norm-attainable operators.

(ii). Establish norm-attainability conditions for orthogonal polynomials.

(iii). Establish the relationship between orthogonal polynomials and norm-

attainable operators.

The study achieved these objectives by exploring the characterization of

norm-attainable operators and establishing the conditions and connec-

tions specific to orthogonal polynomials. The study was able to provide a
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comprehensive understanding of orthogonal polynomials within the con-

text of norm-attainable classes.

1.5 Significance of the study

This study holds paramount significance in both theoretical and practi-

cal domains. The characterization of orthogonal polynomials in norm-

attainable classes contributes to the advancement of theoretical knowl-

edge. By delving into the properties and behavior of norm-attainable

operators and their connection to orthogonal polynomials, this research

enhances our understanding of fundamental mathematical concepts. The

findings can potentially inspire further investigations and lay the ground-

work for new theoretical frameworks in functional analysis and approxi-

mation theory. Moreover, the practical implications of this study are note-

worthy. Norm-attainable classes and orthogonal polynomials have numer-

ous applications in diverse fields such as signal processing, numerical anal-

ysis, and mathematical physics. Understanding the norm-attainability of

orthogonal polynomials enables the development of improved algorithms

and methodologies in these domains. It can enhance the efficiency and

accuracy of signal reconstruction, data approximation, and solving differ-

ential equations. Furthermore, the insights gained from this research can

guide the design and optimization of numerical algorithms, contributing

to advancements in computational mathematics and scientific computing.

Ultimately, the practical significance of this study lies in its potential to

impact various industries and scientific disciplines, leading to improved

techniques and solutions for real-world problems.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, we examined the existing literature on norm-attainable

operators in NA(H), polynomials, and orthogonal polynomials. This

comprehensive review was conducted as part of our study to establish

norm-attainability conditions for orthogonal polynomials and deepen our

understanding of their behavior within the context of norm-attainable

classes.

2.2 Norm-attainable operators

Let T : H → H be a group of linear operators that are bounded with

the properties that ∥Tx0∥ = ∥T∥ for a unit vector x0 ∈ H are called

norm-attainable operators. Such operators have a host of properties and

applications which have attracted the interest of many mathematicians.

Bounded linear operators which meet different criteria of norm-attainability
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on Banach spaces form an algebra or class with a host of properties. Some

of these properties include, sequential compactness, density among oth-

ers. After the inquiry by [45] about which X and Y (Banach spaces) have

a dense class of norm-attainable operators belonging to B(X, Y ), there

has been significant progress in the field. In particular, [93] responded

to the question when X is isomorphic to the Banach space [0, 1]. This

means that he investigated which Banach spaces Y have a dense class of

norm-attainable operators in B(L1[0, 1], Y ). The paper by [69] explores

the essential criteria that must be met for operators and derivations, with

a specific focus on self-adjoint and contraction operators, to achieve norm-

attainment.

In our study, however, we have applied the spectrum of such operators to

the construction of orthogonality in polynomials. Furthermore, we have

not considered the characteristics of the range of the norm-attainable op-

erators. Moreover we have considered norm-attainable operators which

are also compact in nature.

The findings presented in [62] addressed the question of whether certain

compact operators can be effectively approximated by NA operators. In

the study cited as [62], counterexamples were utilized to present com-

pelling evidence that refutes the existence of an affirmative solution to

the inquiry concerning compact linear operators between Banach spaces.

The results of the study revealed that while such operators do exist, they

cannot be approximated by operators that achieve their norms. The

authors effectively utilized counterexamples to illustrate the infeasibility

of approximating linear compact operators between Banach spaces with

norm-attainable operators. Hence, their study convincingly demonstrated
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that although compact linear operators are present in these spaces, they

cannot be accurately approximated by operators that attain their norms.

Our results however shows a criterion of norm-attainability of compact

operators which are self-adjoint in nature. Indeed we have not considered

approximations of such compact operators. Furthermore we have con-

fined our study in operators which act strictly on Hilbert spaces and not

Banach spaces.

In a previous study in [30], a Banach space X satisfies Dunford-Pettis

property if, ∀ Banach spaces Y , any weakly compact operator T ∈ B(X, Y )

maps weakly Cauchy sequences to strongly Cauchy sequences. Further-

more, norm-attainability of different compact operators on different Ba-

nach spaces was investigated in the same study, and conditions for norm-

attainability were established.

(i). A compact operator is norm-attainable if the underlying space is

sequentially compact Banach space.

(ii). A weakly compact operator is norm-attainable if it acts on a se-

quentially compact space and Dunford- Pettis property holds for

the space.

(iii). Any finite rank operator is norm-attainable if the Banach space it

acts upon has separable quotient space and the superspace of its

range has absolutely summable sequences.

Our work has deviated from this matter significantly. Indeed the underly-

ing vector space considered in our study is a Hilbert space (separable) of

orthogonal polynomials rather than a separable quotient Banach space.
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Moreover, the author conducted an investigation on the density char-

acteristics of a specific class of NA operators in relation to the tensor

product. This study primarily focused on the tensor product involving

norm-attainable operators and the density characteristics of the domain

of such operators. Our study however considered other properties of the

norm-attainable operator including normality, self-adjointness and oth-

ers.

An adjoint of an operator is an involution which can be applied in the def-

inition of other classes of operators like normal, hyponormal, subnormal

and paranormal operators. Bram-Halmos criterion for subnormality of an

operator is one particular criterion that employs the adjoint operator. The

criterion for establishing the subnormality of an operator, as described in

references [3] and [6], incorporates the concept of the adjoint. By employ-

ing the involution provided by the adjoint, this criterion offers a way to

determine whether an operator satisfies the subnormality condition. In a

similar fashion, weak k-hyponormality of an operator T was defined in [8].

In 2012, Jun Ik Lee [47] applied norm attainability concept of such spe-

cial operators as normal, hyponormal, subnormal and paranormal. The

subspace of such norm-attainable operators (norm-attainable paranormal

operators) were then considered. The study conducted by [47] presents

significant findings regarding the characterization of norm-attainable phe-

nomena. Specifically, their research explores the norm-attainability of

paranormal entities. Furthermore, within the same study, the authors

also provide a characterization of norm-attainable quadratically hyponor-

mal weighted shifts. In a notable study by [47], it was demonstrated that

the subnormality property holds for the norm-attainable quadratically
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hyponormal weighted shift operator. Although our work has touched on

the conditions of norm-attainability of operators, it has not considered

quadratically weighted shift operators which are subnormal, hypernor-

mal and more.

The problem of norm attainability on Banach spaces which was done by

James in [10] was continued in [87]. However, the main focus of S.Shkran

[87] was norm attainability of operators with pseudo spectrum which act

on finite dimensional Banach spaces. In the results of [87], the author

established a new criterion for establishment of norm attainability of op-

erators which touch on the spectra of the operator. The mentioned result

[87] relies on operators that operate on subspaces or quotients which are

direct sums of finite-dimensional Banach spaces, specifically the ℓp-direct

sum. In our scenario, we are working with Hilbert spaces. Moreover it

was shown that the new operator 1 + T constructed arbitrarily from op-

erator T on condition that the norm of the new operator is greater than

unity.

Our study does not consider such operators but instead use norm-attainable

operators. A new method of characterization of absolutely norm-attainable

operators was established in [71], for compact operators T ∈ B(H) which

also meet the condition ∥Tx∥ ≥ ∥T ∗x∥ for all x ∈ H. In fact, propo-

sition 3.3 in [71], clearly works for absolutely norm-attainable operators

but may not work for norm-attainable operators. The author of [71] pro-

vided a comprehensive analysis, establishing the precise conditions that

both ensure and demonstrate the absolute norm-attainability of bounded

compact hyponormal operators in infinite-dimensional complex Hilbert

spaces. In the study conducted by [71], they investigated the concept of
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the algebra of absolutely norm-attainable operators denoted as AN(H).

However, their focus primarily revolved around examining the structural

properties associated with absolutely norm-attainable operators, which

is not directly relevant to our current interest. The study of properties

of norm-attainable NA operators, as discussed in the reference [79], re-

veals an interesting observation: the unit ball of NA operators acting

on a Hilbert space, denoted as H, consists solely of isometries and co-

isometries. This finding provides a significant result. Moreover, the same

reference [79] presents compelling evidence supporting the claim that any

arbitrary operator on a Hilbert space, if it is normal, automatically falls

into the category of NA operators. Consequently, this provides a pos-

itive answer to the question of whether all normal operators are norm-

attainable. Contrarily, our study focusses on the application of aspects of

norm-attainable operators like spectrum e.t.c. Our work does not touch

on the isometries, co-isometries and other operators like normal opera-

tors.

Results of [70] further exposed the intricate relationship between the no-

tion of norm-attainability and positive normal and normaloid operators.

Precisely, it was shown in [70] the conditions that should be made for

positive normal and normaloid operators to be NA.

Theorem 2.1. ([70], Theorem 4.1) Suppose S ∈ B(H) i a positive nor-

mal and normaloid operator. If α ∈ C\{0} is such that

∥S − αx∥ < m for m > 0. Then (0 ≤)∥S∥ − r(S) ≤ 1
2
m2

∥α∥ . Moreover, S

is NA.

Our work does not consider the construction of NA operators or the op-

erators applied in their construction. We have only given example of NA
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operators, calculated their norms and applied their eigenvalues to con-

struct orthogonal polynomials system.

The idea of norm-attainability of elementary operators [72], was investi-

gated with respect to contractions and unitary operators as the inducing

operators. In the document [72], it was established that existence of a uni-

tary operator is a necessity for elementary operator to be norm-attainable.

Our work does not involve elementary operator, isometry or co-isometry.

Furthermore results of [70] and [72] did not consider the applications of

any aspect of elementary operators. Topological considerations of prop-

erties of norm-attainable operators were investigated by [80]. Precisely,

relationships between different convergences of norm-attainable operators

and those of norm-attainable norms in projective norms were shown in

[80]. Our study has touched on power bounds but it is notable that

we considered polynomial bounds for norm-attainable operators. Fur-

thermore, we have not investigated convergence of the sequences in the

projective norm induced by tensor product.

Other properties of norm-attainable operators were investigated by [73].

Such properties as separability and norm density of range, supraposi-

normality, coposinormality, posinormality and α-hyponormality of pos-

itive invertible norm-attainable operators. The author in [73] utilizes

the Fuglede-Putnam theorem to establish the necessary conditions for

positive invertible norm-attainable operators to possess certain proper-

ties. Lemma 3.1 in the paper presents these conditions. If the range

of the positive invertible operator Q is both separable and dense, then

the operator A is shown to be supraposinormal, and the kernel of Aα

is contained within the kernel of Aα∗. Similarly, if the positive invert-
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ible operator P has a dense separable range, then A is proven to be

supraposinormal and dominant, and again the kernel of Aα is included

in the kernel of Aα∗. Furthermore, if Q is positive invertible and norm-

attainable, then the α-supraposinormal operator A is also α-posinormal

and therefore α-hyponormal. On the other hand, if P is positive invertible

and norm-attainable, A is established as an α-supraposinormal operator,

which implies it is also an α-coposinormal operator. When both P and Q

are positive invertible and norm-attainable, A exhibits both posinormal

and coposinormal properties, with the kernels and ranges of Aα and Aα∗

being equal. Lastly, if either P or Q is dominant while both are positive

invertible, A is characterized as both an α-coposinormal and an NA op-

erator, and the intersection of the kernels of Aα and Aα∗ is equivalent to

the intersection of the ranges of Aα and Aα∗.

As in the case of [73], we generated a spectrum for norm-attainable op-

erators, but we have not used positive invertible operators. Furthermore,

we have not involved Fugledge-Putman theorem in our study. Finally,

it is notable that we have only used the real subset of the spectrum of

norm-attainable operators to induce orthogonality in polynomials.

The concept of approximating operators was extensively discussed by

Martin in their notable work [62]. They demonstrated that within the

framework of Banach spaces, the existence of a compact linear operator

is guaranteed, which defies any attempts at approximation through NA

operators. This finding was proved by [62] using Lindenstrauss theorem

and Efflo’s example. Other than this [62] also investigated the properties

of subspaces of the class of norm-attainable operators which act on convex

subspaces of Banach spaces.
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Theorem 2.2. ([62], Theorem 1) Compact linear operators between Ba-

nach spaces do exist, but they cannot be approximated by operators that

are NA.

In contrast, our work on the other hand has not touched on approxima-

tion of compact operators by norm-attainable operators. However, we

have applied the idea of approximation of polynomials by functions. We

have also considered only the real subspace of the spectrum of compact

NA operators.

The paper by [10], investigates the norm-attainment property of random

operators. The authors examined the norm-attainment property of ran-

dom operators and focussed on operators whose coefficients are random

variables. They also explored the conditions under which such random

operators attain their norms with high probability. The analysis in the

paper involved the concentration of measure phenomenon and provided

probabilistic bounds for the probability of norm attainment. In [55] the

authors focussed on the uniform norm-attaining property of operators,

which relates to the uniform convergence of the norms of operators over

a given set. The authors examined the conditions under which an op-

erator uniformly attains its norm on a set and provide characterizations

of operators with this property. They also investigated the connections

between uniform norm attainment and other operator properties, such

as compactness and uniform convexity. This is different from our work

where we have offered specific conditions under which certain types of

operators, such as compact and self-adjoint operators, normal operators

with certain properties, or functional calculus operators, belong to the

norm-attainable class.
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2.3 Orthogonal Polynomials

In [44], the author analyzed the decomposition of polynomials into sums

of other unique polynomials. Theorem 3.4 in [44], involve the application

of unique factorization theorem and it is shown that such algorithm de-

pend on the degree of the polynomial. Furthermore, such decomposition

depends on whether the remainder r(x) = 0 or not. In our study, we

have focussed on the norm-attainability of classical orthogonal polyno-

mials using Rodrigues algorithm and integration by parts. We have also

considered positivity, convexity and strict convexity of polynomials.

Just like polynomials, a lot of results exist on orthogonal polynomials.

These results range from their construction, analysis of their moment of

generating functions, analysis of their zeros, types of polynomials which

are orthogonal (Jacobi, Laguerre, Hermite, Besel, Legendre) and their

applications among others.

The construction of orthogonal polynomials is addressed squarely in [75]

by using arbitrary moment generating functions µ(x) and a sequence of

positive numbers. In our study, we have used a sequence of eigenvalues

of defined operators to generate such orthogonal polynomials. Addition-

ally, we have investigated various properties such as positivity, norm, and

others, for orthogonal polynomials defined on multiple variables using

non-orthonormal bases. We have also generated a normed vector space

of orthogonal polynomials upon which differential operators act.

In [67] Proposition 1.2.1, the author constructed the result on the use

of weight functions to generate a system of monic orthogonal polynomi-

als. Contrary to this, our work has considered properties of operators

which act on a space of such monic orthogonal polynomials. The work of
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[67], clearly considers the construction of orthogonal polynomials system

which form a Hilbert space L2(w2) with norm
√
n+ 1. However, our work

considered norms for different classical orthogonal polynomials. We have

also used the norms due to such orthogonal polynomials to determine

whether each type is NA. Furthermore we have applied the constructed

orthogonal polynomials to construct a normed vector space.

In our study, we have utilized orthogonal polynomials in conjunction with

various weight functions to investigate the norm-attainability of classical

orthogonal polynomials. Our research builds upon the work of previ-

ous researchers [24], who established the presence of a three-term recur-

rence relationship in a system of orthogonal polynomials. Moreover, they

demonstrated that the zeros of consecutive orthogonal polynomials on

any given interval are distinct. Additionally, they provided evidence that

a sequence of orthogonal polynomials is always linearly independent when

the degree of the initial polynomial is finite.

The application of matrices to orthogonal polynomials was pioneered by

[90]. In their work, they utilized non-square matrices as coefficients in

the three-term relation of orthogonal polynomials, resulting in a collec-

tion of distinct coefficient matrices. While their study focused on the

three-term relation of orthogonal polynomials, our research diverges by

exploring the properties of convexity and positivity associated with these

orthogonal polynomials. Moreover, we have not specifically investigated

the coefficient matrices generated by this particular family of orthogonal

polynomials.

A lot of literature exists on the application of linear functionals on polyno-

mials to generate orthogonal polynomial family. The work of [91] involved
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the use of linear functionals to generate a system of orthogonal polyno-

mials. After that, the three term relation for the orthogonal polynomial

system was examined under the restriction of the theorem 3.2. Our study

also involved linear functionals on the space of orthogonality of poly-

nomials. Indeed we have considered the properties of linear differential

operators which include normality, self-adjoint etc. However, we have not

involved the use of matrices as coefficients of the three-term recurrence

formula.

Using linear functional and moment of finite order, [21] investigated the

conditions necessary for a system of polynomials to be orthogonal. Still

in [21], the properties of the functionals used together with moments

of finite order to generate orthogonal polynomials were considered us-

ing Favards theorem for one variable. Furthermore, we have not applied

Favards theorem although we have considered different classical orthogo-

nal polynomials of one variable.

Our research primarily concentrated on linear differential operators, simi-

lar to the ones examined in [21] (specifically, theorem 2.1). It is important

to note that the operators we employed in our study were not in matrix

form. Consequently, we did not explore the determinants of these opera-

tors. Moreover, we have not considered the properties of the functionals

which induce the orthogonality as in the case in [21]. However, we have

analyzed the linear functionals which act on the space of such orthogonal

polynomials. Furthermore, we have not considered the moments of such

functionals.

Author [34] demonstrated the application of a real number sequence to

the orthogonality of polynomials, particularly focusing on the three-term
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recurrence relation. Their study utilized this approach to establish the ex-

istence of a moment function associated with an indeterminate of bounded

variation. By employing this methodology, they were able to provide a

robust proof for the existence of such a moment function. Although our

study has not touched on bounded variations, we have used the definite

integral
∫ b

a
qn(x)qm(x)δα(x) to prove norm-attainability for different clas-

sical orthogonal polynomials.

The work of [11], also considered the use of regular linear functionals on

the orthogonality of polynomials. Indeed it was shown that if such a

functional exists, then the system of orthogonal polynomials exists such

that the orthogonality is not induced by moment generating functions.

Such functionals were also used to generate monic orthogonal polynomial

with characteristic matrix (Gram), whose determinant determine the or-

thogonality. Similar to the approach employed by [11], our study also

incorporates the use of linear functionals. However, we extend beyond

the scope of regular functionals and consider a broader range of func-

tionals in our research. Additionally, in our study, the orthogonality of

the system is exclusively determined by the inner product and the mo-

ment generating function. Similarly, in the work of [21], the construction

of orthogonal polynomials was facilitated by the application of Favard’s

theorem. However, it is important to note that the functionals utilized in

[21] are moment functionals.

The researcher in [61], investigated the relationship between orthogonal

polynomials of infinite order and those of finite order and generated by

regular linear functionals. Additionally, we have examined the derivatives

of these orthogonal polynomials in relation to the orders of the monic
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polynomials Contrarily, our study does not consider relationship between

monic orthogonal polynomials of different order. Furthermore, no con-

siderations about our work have been made on the derivatives of the

orthogonal polynomials. Although we have used the sum of the orthogo-

nal polynomials derivatives to generate a linear functional with a variety

of properties.

It was further shown in [21] that the system of orthogonal polynomials

can be modified to be strictly monic and that a Hankel determinant exists

and that if it is manipulated analytically, it generates the leading coeffi-

cient of the parent polynomial. This is a contradiction to our work which

involves construction of a functional (linear differential operator) which

is not dependent on the moments at all.

The paper by Mourad [66], focussed on the norm attainment properties

of orthogonal polynomials in the L2 space, which is a space of square-

integrable functions. It provides conditions under which the norms of or-

thogonal polynomials can be attained, meaning there exist functions that

achieve the maximum or minimum value of the norm. The paper also

characterizes the extremal functions that achieve these norms, providing

insights into the behavior and properties of the orthogonal polynomials.

Further, in [94], the author investigated the norm attainment proper-

ties of orthogonal polynomials in various contexts, including classical and

non-classical orthogonal polynomials. The paper presents necessary and

sufficient conditions for the norm attainment of orthogonal polynomials.

These conditions indicate when it is possible for orthogonal polynomials

to attain their maximum or minimum norm.The paper further explores

the connection between norm attainment and extremal problems, which
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involve finding functions that optimize certain properties related to the

orthogonal polynomials.

It is clear that the authors discussed norm attainment properties of or-

thogonal polynomials in a more general context different from our work,

where we have focussed on specific cases and families of orthogonal poly-

nomials with different weight functions. We have specifically addressed

the concept of norm-attainability conditions for Hermite polynomials with

a normal distribution weight function, Laguerre polynomials with a gamma

distribution weight function, Legendre polynomials with a constant weight

function, and Jacobi polynomials with a Beta distribution weight func-

tion. We have highlighted the norm-attainability properties of these spe-

cific families of orthogonal polynomials on specific intervals with different

weight functions.

2.4 Link between OP and NAO in NA(H)

A considerations of polynomials whose coefficients are operators which are

numbers of Schatten-Von Neumann ideals for the compact operators in

Hilbert spaces was considered extensively in [65]. The author [65] applied

the regular points and eigenvalues of such bounded invertible polynomi-

als to determine how close the spectra of two such polynomials are if

one is induced by the regular points and another by the eigenvalues of

the compact operator. Indeed the polynomials discussed in [65] clearly

did not involve the OP as in the case of our study. Furthermore, our

study did not consider the polynomials involving regular points of the

operator in question. Lastly the results of [65] never considered the poly-
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nomials which involve norm-attainable operators as coefficients. It is also

notable that the eigenstructure of members of Schatten-Von Neumann

ideals of compact operators may be significantly different from those of

norm-attainable operators used in our work.

The concept of orthogonality in the real normed space have a variety of

meanings: Roberts, Birkhoff’s orthogonality among others. In [69] the

author studied orthogonality for elementary operators which are imple-

mented by norm-attainable operators. This is a classical of application of

NA operators in characterization of other operators. Indeed the propo-

sition 2.2 in [69], shows a condition necessary for an inner derivation as

an elementary operator to be norm-attainable. Furthermore, for other

elementary operators, a criterion for norm attainability follows from the

proposition.

In our work, we have shown that the orthogonal polynomials form a

normed vector space. We have also shown that an operator which act

on such a space is self-adjoint, closed but not compact. Furthermore, it

is notable that our study on the other hand does not consider elementary

operators.

In the analysis of linear positive operator sequences denoted as pn, a study

was conducted in [69] on operators of the form [qn,k(x)] =
(
n
k

)
xk(1−x)n−k,

where x ∈ [0, 1], n ≥ 1, and k = 0, 1, . . . , n. The authors established a

connection between these operator sequences pn and a simpler sequence

denoted as vn, which was originally introduced by Stancu [89]. This

link provided insights into the relationship between Bernstein polynomi-

als and Stancu polynomials as discussed in [13, 89]. The properties such

as convexity and spectra of such sequences were investigated. Indeed the
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theorems in [89], the eigen polynomial qr corresponding to λr can be cho-

sen as a monic polynomial of degree r to show the connection between

such sequences and also give the criterion of determining the eigenstruc-

ture of such operators. In our study though, such operators have not been

considered. Instead, we have considered linear differential operators.

Investigations on polynomials whose coefficients are linear bounded oper-

ators between fixed separable complex Hilbert spaces have always touched

on the problem of factorization. As such problem of factorization of such

polynomials is important, and has been proved by [85] to be strongly

influenced by the density of a set of diagonalizable linear operators in a

finite dimensional vector spaces.

The author of [85] investigated this observation on a set of all (BQT) biqu-

asitriangular operator polynomials of finite degree with induced topology.

This has proved to vital in our study thus

Theorem 2.3. ([85], Theorem 1) The set of all degree 1 factorable biqu-

asitriangular mononomials is dense in BQT .

This theorem applies direct sum decomposition of the separable Hilbert

space into invariant subspaces. It also involves biquasitriangular opera-

tors which may or may not be norm-attainable. The monic nature of the

polynomials in question does not apply to our study. Although our work

similarly apply the idea of this functional calculus, the set of polynomials

used are those that are mutually orthogonal. Moreover, the operator used

as the coefficients are the companion operators with a host of properties

which are different from those of norm-attainable operators as it can be

seen in [85].

The authors in [19], investigated the connection between orthogonal poly-
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nomials and norm-attaining operators in a Hilbert space. They explored

the properties of orthogonal polynomials and their role in the charac-

terization of norm-attainable operators and established conditions under

which a bounded linear operator on a Hilbert space is norm-attainable.

They further demonstrated that the existence of a certain type of or-

thogonal polynomials associated with the operator’s spectrum is closely

related to the operator’s norm-attainability. In our study however, we

have provided the properties of the operator T (u), such as its adjoint,

closure, eigenvalue problem, and the norm-attainability of T (u) on the

function space C0([0, 1]). These results are specific to the operator T (u)

and its behavior within the function space setting. This is a contrast from

[19] where the authors explored the general connection between orthogo-

nal polynomials and norm-attainability of bounded linear operators on a

Hilbert space.

In [41], the author focused on the interplay between orthogonal polyno-

mials and norm-attaining operators in the context of weighted Bergman

spaces. They examined the connection between the asymptotic behav-

ior of orthogonal polynomials and the norm-attainability of certain inte-

gral operators where they established the necessary and sufficient condi-

tions for the norm-attainability of integral operators in weighted Bergman

spaces using the properties of orthogonal polynomials. They further pro-

vided explicit examples illustrating the relationship between orthogonal

polynomials and norm-attaining operators. The authors established gen-

eral conditions for the norm-attainability of integral operators in weighted

Bergman spaces using orthogonal polynomials. In contrast, we have pro-

vided specific results and formulas for the adjoint operator, norm, and
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eigenvalue problem of the given differential operator where we focussed

on analyzing the properties of this particular operator T (u) in the context

of C0([0, 1]).

The paper by [54], investigated the norm-attainability of Toeplitz opera-

tors and its connection to orthogonal polynomials. It explored the rela-

tionship between the properties of orthogonal polynomials and the norm

attainment of Toeplitz operators on Hardy spaces and the authors found

the conditions for the norm-attainability of Toeplitz operators in terms

of the zero distribution of orthogonal polynomials. They also gave ex-

amples illustrating the role of orthogonal polynomials in determining the

norm attainment of Toeplitz operators. In our study we have discussed a

specific second-order differential operator T (u) and its properties, differ-

ent from [54] where the authors focusessed on the norm-attainability of

Toeplitz operators on Hardy spaces in relation to orthogonal polynomials.

Chatzikonstantinou and Nestoridis [19] provided a comprehensive overview

of the relationship between orthogonal polynomials and norm-attaining

operators. They covered a wide range of topics, including the char-

acterization of norm-attaining operators using orthogonal polynomials,

the computation of the norm of norm-attaining operators using orthogo-

nal polynomials, and applications of the relationship between orthogonal

polynomials and norm-attaining operators in quantum mechanics, signal

processing, and linear algebra.

Li and Zheng [54] studied the relationship between orthogonal polynomi-

als and norm-attaining Toeplitz operators. They showed that the norm

attainment condition for Toeplitz operators could be expressed in terms

of the orthogonal polynomials associated with the symbol function. They
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also showed that the norm of a norm attainable Toeplitz operator could

be expressed in terms of the coefficients of the associated orthogonal poly-

nomials.

Zhu and Zhu [97] studied the relationship between orthogonal polynomi-

als and norm-attaining operators on Fock spaces. They showed that the

norm attainability of an operator on a Fock space could be characterized

using properties of the orthogonal polynomials associated with the oper-

ator. They also showed that the norm of a norm attainable operator on a

Fock space could be expressed in terms of the coefficients of the associated

orthogonal polynomials.

In this study, we established properties and relationships involving the in-

ner product between functions, the adjoint operator, and the eigenvalue

problem associated with T(u) in a Hilbert space H. Our results com-

plemented the existing literature on orthogonal polynomials and norm-

attaining operators by providing specific and explicit results for a partic-

ular differential operator.

Despite all these attempts to characterize orthogonal polynomials and

norm-attainable operators, the relationship between the two remained an

open question until this study bridged that knowledge gap by investigat-

ing and shedding light on the characterization of orthogonal polynomials

in the space of norm-attainable operators.

39



Chapter 3

RESEARCH

METHODOLOGY

3.1 Introduction

This chapter provides an overview of the fundamental principles, essential

results, and key equalities and inequalities that played a significant role

in proving our main results regarding the characterization of orthogonal

polynomials and norm-attainable operators in NA(H).

3.2 Fundamental Principles

The study of norm-attainable operators (NAO) and their connections to

orthogonal polynomials (OP) is a fascinating and important area of re-

search in operator theory. Understanding the behavior and properties of

these operators and their associated eigenfunctions not only deepens our

understanding of mathematical analysis but also has significant implica-
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tions in various fields, including physics, engineering, and data science. In

this thesis, we have investigated the relationship between OP and NAO

within the framework of the norm-attainable class NA(H). In achieving

our goal, we adopted a comprehensive methodology that incorporated fun-

damental principles and concepts from operator theory. Our methodology

encompasses differential operators, adjoint operators, inner products, in-

tegration by parts, closed operators, eigenvalue problems, self-adjointness,

normality, and null spaces. By employing these principles, we analyzed

and characterized the behavior of the operator T (u) and its associated

eigenfunctions in different function spaces.

Differential operators also played a pivotal role in our analysis. By study-

ing second-order differential operators and their adjoint operators, we

gained insights into their self-adjointness and the properties of their eigen-

value problems. This enabled us to explore the behavior of the eigenfunc-

tions, which formed the basis of our investigation. The utilization of inner

products and integration by parts allowed us to measure the similarity

or orthogonality between functions and manipulate integrals involving

derivatives. These tools were essential in analyzing the relationships be-

tween functions and operators and formed a fundamental part of our

methodology. The concept of closed operators was another key aspect of

our study. By examining the closedness of operators, we were able to de-

termine their stability and completeness, shedding light on their inclusion

in the norm-attainable class NA(H). We also explored the properties of

self-adjoint and normal operators. Self-adjoint operators possess a spe-

cial symmetry property that plays a significant role in their analysis, while

normal operators satisfy a commutation relationship with their adjoints.
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These properties provide valuable insights into the behavior and classifi-

cation of operators within NA(H). Furthermore, the study of null spaces,

or kernels, of operators is a crucial component of our analysis.

By investigating the properties and relationships between null spaces of

different powers of an operator, we gain a deeper understanding of their

behavior and their connection to norm-attainability. By employing these

fundamental principles and concepts from operator theory, our research

aims to contribute to the understanding of the relationship between OP

and NAO within NA(H). We believe that our comprehensive method-

ology will provide valuable insights into the behavior and classification

of operators and their associated eigenfunctions, paving the way for ad-

vancements in mathematical analysis and its applications in various fields.

3.3 Known Useful Results

Our research delves into the realm of orthogonal polynomials (OP) and

norm-attainable operators within the norm-attainable class NA(H), em-

ploying a suite of sophisticated methodologies and theoretical underpin-

nings. A fundamental pillar of our analysis lies on Spectral Theorem for

Compact SA Operators, which serves as a cornerstone for understanding

the spectral properties of these operators.

Theorem 3.1. [86] Suppose A′ is a compact self-adjoint operator on a

Hilbert space H. Then there exists an orthonormal basis {e′n} of H and
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a sequence of real numbers {λ′n} such that

A′e′n = λ′ne
′
n for all n,

λ′n → 0 as n→ ∞,

H =
∞⊕
n=1

span(e′n).

The eigenvalues λ′n known as eigenvalues of A′ and e′n known as eigen-

vectors of A′.

This theorem establishes that every compact SA operator within a Hilbert

space is characterized by a complete set of orthonormal eigenvalues. It

serves as the foundational cornerstone for comprehending the spectral

properties inherent in compact self-adjoint operators.

To further broaden our theoretical framework, we employ Spectral The-

orem for Normal Operators, which finds its application within finite-

dimensional complex inner product spaces V. This theorem is pivotal

in elucidating the spectral traits of normal operators, offering a thorough

comprehension of how they behave.

Theorem 3.2. [70] Given T ′ as a normal operator on a finite-dimensional

complex inner product space V ′. Then there exists a unitary operator U ′

so that U∗T ′U ′ is a diagonal matrix. Moreover, there exists a unique set

of projection operators {E ′
λ : λ′ ∈ σ(T ′)} such that:

1. E ′
λE

′
µ = 0 for λ′ ̸= µ.

2.
∑

λ′∈σ(T ′)E
′
λ = I.

3. T ′ =
∑

λ′∈σ(T ′) λE
′
λ.
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The set of projection operators {E ′
λ : λ′ ∈ σ(T ′)} becomes the spectral

family of T ′, and the decomposition T ′ =
∑

λ′∈σ(T ′) λE
′
λ is called the spec-

tral decomposition of T ′.

This theorem establishes that any normal operator upon a Hilbert space

can be transformed into a multiplication operator on the L2(Ω, µ) space

through a unitary equivalence, with Ω representing the spectrum of the

operator.

3.4 Technical Approaches

The technical methodologies employed in our research outcomes were

based on a set of key techniques. First, spectral theory played a funda-

mental role in our analysis. By exploring the characteristics of eigenvalues

and eigenvectors of specific operators, spectral theory provided valuable

tools, including the spectral decomposition of self-adjoint operators and

the notion of an operator’s spectrum. Additionally, norm-attainability

was a crucial concept in several propositions we presented. We investi-

gated norm-attainable functions or polynomials, which are functions for

which the norm is achieved by an element within the function space. This

exploration of norm-attainable functions allowed us to establish impor-

tant conditions and relationships. Moreover, compact operators played

a significant role in our work. These operators possess the property of

mapping bounded sets to relatively compact sets. Leveraging the com-

pactness property, we derived various results, including the normality of

operators and the properties of their eigenspaces.
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Functional calculus was another technique we employed, enabling us to ex-

tend the concept of a function to operators. Through functional calculus,

we defined functions of operators and analyzed their properties, thereby

establishing connections between operators and their spectral properties.

In propositions related to second-order differential equations, we utilized

techniques from differential equations and calculus, specifically focusing

on differential operators. These operators were analyzed to determine

properties such as self-adjointness and closedness.Finally, we leveraged

the concepts of convexity and positive definiteness, which are fundamen-

tal in functional analysis. These properties played a crucial role in estab-

lishing conditions for norm-attainability and proving the equivalence of

different statements.

In summary, our research incorporated a combination of these technical

approaches: spectral theory, norm-attainability, compact operators, func-

tional calculus, differential operators, and the utilization of convexity and

positive definiteness. Through their application, we derived significant re-

sults and contributed to the understanding of the subject matter.

3.5 Fundamental Equalities and Inequali-

ties

In our research findings, we have employed several fundamental equalities

and inequalities [4], that serve as crucial tools in our analysis. Firstly, we

have utilized the triangular inequality, which states that for any vectors

x′ and y′ in a normed vector space, the absolute difference between the
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magnitudes of their components, denoted as ∥x′∥ − ∥y′∥, is always less

than or equal to the magnitude of their vector difference, ∥x′ − y′∥. That

is,

∥x′∥ − ∥y′∥ ≤ ∥x′ − y′∥.

Another important inequality we have employed is the Cauchy-Schwarz

inequality.

∥⟨x′, y′⟩∥ ≤ ∥x′∥∥y′∥.

This inequality applies to vectors in an inner product space and asserts

that the absolute value of the inner product of two vectors, denoted as

⟨x′, y′⟩, is bounded by the product of their magnitudes, ∥x′∥ and ∥y′∥. In

other words, ∥⟨x′, y′⟩∥ ≤ ∥x′∥∥y′∥. Furthermore, we have utilized Holder’s

inequality

∥x′y′∥ ≤ ∥x′∥p∥y′∥q,

which holds for vectors x′ and y′ in a normed vector space and positive

real numbers p and q satisfying 1
p

+ 1
q

= 1. This inequality states that

the absolute value of the product of the components of x′ and y′, denoted

as ∥x′y′∥, is less than or equal to the product of their ℓp and ℓq norms,

denoted as ∥x′∥p and ∥y′∥q, respectively.

Additionally, we have applied Jensen’s inequality, which relates to con-

vex functions. If f ′ is a convex function defined on an interval I, and

x′1, x
′
2, . . . , x

′
n are points within this interval, while a′1, a

′
2, . . . , a

′
n are non-

negative real numbers that sum up to 1, then Jensen’s inequality states

that the value of the convex function evaluated at the weighted average

of the x′ values, namely f ′(a′1x
′
1 + a′2x

′
2 + . . . + a′nx

′
n), is less than or

equal to the weighted sum of the function values at each x′ value, i.e.,
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a′1f
′(x′1) + a′2f

′(x′2) + . . .+ a′nf
′(x′n). Moreover, we have made use of Par-

seval’s identity, which applies to vectors x′ and y′ in a Hilbert space. This

identity states that the square of the magnitude of x′, denoted as ∥x′∥2,

is equal to the sum of the squared absolute values of the inner products

between x′ and an orthonormal basis y′n of the Hilbert space. Mathemat-

ically, it can be expressed as ∥x′∥2 =
∑∞

n=0 ∥⟨x′, y′n⟩∥2. Lastly, we have

employed Bessel’s inequality, which also applies to vectors x′ and y′ in

a Hilbert space with an orthonormal basis y′n. Bessel’s inequality states

that the sum of the squared absolute values of the inner products be-

tween x′ and the orthonormal basis elements,
∑∞

n=0 ∥⟨x′, y′n⟩∥2, is always

less than or equal to the square of the magnitude of x′, i.e., ∥x′∥2.

By incorporating these fundamental equalities and inequalities into our

analysis, we have been able to establish and support our results in a

rigorous manner, ensuring proper credit is given to these mathematical

principles.
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Chapter 4

RESULTS AND

DISCUSSION

4.1 Introduction

The prerequisites for norm-attainable operators, the characteristics of or-

thogonal polynomials, and the connection between orthogonal polynomi-

als and NA(H) have all been covered in this chapter.

4.2 Norm-attainability conditions

We examine norm-attainability requirements and operator characteris-

tics in both Banach and Hilbert spaces. Our findings demonstrate the

attainability of norms for compact operators, self-adjoint operators, and

self-adjoint contractions.

Proposition 4.1. Suppose a function T ′ from a vector space H ′ to itself

is both compact and self-adjoint then T ′ ∈ NA(H ′) .
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Proof. Since T ′ is SA by the proposition, then ∃ a vector x′ of H ′ such

that ∥T ′∥ = sup{|⟨T ′x′, x′⟩| : ∥x′∥ = 1}. This implies ∃ {x′n} of unit

vectors such that |⟨T ′x′n, x
′
n⟩| converges to ∥T ′∥. But T ′ is SA implying

|⟨T ′x′n, x
′
n⟩| is real. Hence there ∃ a subsequence {y′n} in H such that

y′n → ∥T ′∥ or y′n → −∥T ′∥. Thus if the norm y′n equals to 1 ∀ n ∈ N we

have ⟨T ′y′n, y
′
n⟩ → β, the real value of either ∥T ′∥ or −∥T ′∥. This implies;

∥T ′y′n − βy′n∥2 = ∥T ′y′n∥2 − 2β⟨T ′y′n, y
′
n⟩ + β2∥y′n∥2

≤ ∥T ′∥2∥y′n∥2 − 2β⟨T ′y′n, y
′
n⟩ + β2∥y′n∥2

= β2 − 2β⟨T ′y′n, y
′
n⟩ + β2

= β2 − 2β2 + β2 = 0

This implies for β ̸= 0, ∥T ′y′n − βy′n∥2 → 0. Since T ′ is compact, {T ′y′n}

has a subsequence {T ′y′nk
} such that T ′y′nk

→ y′ ∈ H ′. Implying;

y′nk
=

(βy′nk
− T ′y′nk

) + T ′y′nk

β

⇒ y′nk
=

0 + T ′y′nk

β

⇒ y′nk
=
y′

β

as T ′y′nk
→ y. Here, {y′nk

} are unit vectors, implying y′ ̸= 0. Hence

y′nk
= y′

β
and due to continuity of T ′, we have T ′y′nk

= T ′ y′
β

which yields

to T ′y′

β
= y′ (since T ′y′nk

→ y′). Hence T ′y′ = βy′ ⇒ (T ′ − βI)y′ = 0.

Hence, an eigenvalue of T ′ is implied by β, where β is either −∥T ′∥ or

∥T ′∥. Hence by [86] T ′ is NA.
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Proposition 4.2. Let T1 = T2 + iT3 be normal with T2 Hermitian and

T3 the operator with diagonal αn given a positive integer n. Then T1 is

NA(H).

Proof. Since T1 is normal, we have ∥T1f∥2 = ⟨T1f, T1f⟩ = ⟨T ∗
1 T1f, f⟩ =

⟨T1T ∗
1 f, f⟩ , ∀f ∈ H. Therefore, ∥T1f∥ = ∥T ∗

1 f∥ for all f ∈ H. Let f

be an eigenvector of T3 with eigenvalue α. Then T1f = T2f + iT3f =

T2f + iαf . Since T2 is Hermitian, we have ∥T2f∥2 = ⟨T2f, T2f⟩ =

⟨f, T2T ∗
2 f⟩ = ⟨f, T1T ∗

1 f⟩. Therefore, ∥T2f∥2 < ∥T1f∥2 if α ̸= 0. This

means that the only eigenvectors of T3 that are also eigenvectors of T1 are

those with eigenvalue α = 0. Since the eigenvectors of T3 with eigenvalue

α = 0 span the entire space H, we can conclude that T1 is diagonalizable.

Moreover, the diagonal entries of T1 are all real, since T1 can be expressed

as summation of a Hermitian operator and a purely imaginary operator.

Therefore, T1 is a normal, diagonalizable operator with real diagonal en-

tries. This means that T1 is self-adjoint, and hence norm-attainable.

Proposition 4.3. Let T : H1 → H2 be normal and T p where p > 0 be

compact then T is NA.

Proof. Let a multiplication operator T be induced by linear and bounded

measurable m×n function (ψ) on a suitable measurable space. Implying

T p is also a multiplication operator induced by ψp. Then T p becomes a

diagonal operator and a direct sum of m×n zero entry matrices where the

diagonal entries are convergent to zero. Consequently, we can express T

as the direct sum of T with a diagonal operator whose diagonal elements

tend to zero. This decomposition implies that T is compact in nature.
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Let M be the closed unit ball of a Hilbert space H1, defined as

M = {x ∈ H1 : ∥x∥H1 ≤ 1}

Due to the compact nature of T : H1 → H2, therefore, under the norm

topology, T (M) ⊂ H1 which is also compact and ∥.∥H1 : T (H1) → (0,∞)

is a continuous function on T (H1). This implies that

sup
x∈M

∥Tx∥H1 = max{∥Tx∥H1 : x ∈M}

Therefore, there exists x0 ∈ H1 such that ∥Tx0∥H1 = ∥T∥.

In the following proposition, we demonstrate the attainability of norms

by contractions.

Lemma 4.4. Given that T : H → H as a SA contraction, then T is NA

iff −∥T∥ or ∥T∥ belongs to the spectrum of T (σ(T )).

Proof. Suppose that −∥T∥ or ∥T∥ is in σ(T ), then for a corresponding

eigenvector x ∈ H, we obtain a new eigenvector x
∥x∥ = x0 by orthonormal-

ization of x so that 1 ≥ ∥T∥ = ∥T ( x
∥x∥)∥ = ∥Tx0∥ ≤ 1 say. Conversely,

suppose that a normalized vector x0 exists in D so that ∥T (x0)∥ = ∥T∥.

Then ⟨(1 − T 2)x0, x0⟩ = ∥x0∥2 > ∥Tx0∥2 and (1 − T 2) > 0 is strictly

positive. Then (1 + T )(x0 − Tx0) > 0 since x0 − Tx0 > 0. Let there be

x′ ∈ H in such a way x′ = (x0 − Tx0) and y′ = x′

∥x′∥ therefore Ty′ = −y′

i.e y′ is unitary eigenvector corresponding to eigenvalue −∥T∥ = −1.

Proposition 4.5. Let H ̸= L1(0, 1). For a SA contraction T ∈ NA(H)

which is also p′-normal. Then αT p′ ∈ NA(H) for some p′ ≤ 1 and
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0 < α < 1 iff ∥T p′∥ or -∥T p′∥ is the farthest point of the numerical range

W (T p′).

Proof. Given M and m as a positive operator defined as M = (I+T )∥T p′∥

and

m = (I − T )∥T p′∥, so that

⟨T p′xo, xo⟩ ≤ ⟨T p′xo, xo⟩ + ⟨Mxo, xo⟩ = ∥T p′∥ (4.2.1)

or

⟨T p′xo, xo⟩ ≥ ⟨T pxo, xo⟩ − ⟨mxo, xo⟩ = −∥T p′∥. (4.2.2)

By supposition that T p′ ∈ NA(H), then ∥T p′∥ or −∥T p′∥ becomes ex-

treme point of W (T p′), because

⟨T p′xo, xo⟩ ≤ ∥T p′∥, ⟨T p′xo, xo⟩ ≥ −∥T p′∥, ∀x0 ∈ D. Conversely, if -

∥T p′∥ or ∥T p′∥ extreme point of W (T p′), then we can obtain x′0 ∈ D such

that ∥T p′∥ = ⟨T p′x′0, x
′
0⟩ or −∥T p′∥ = −⟨T p′x′0, x

′
0⟩. From the inequalities

4.2.1 and 4.2.2, it is clear that ⟨Mx′0, x
′
0⟩ = 0 and because M or m is

positive, (M or m)x′0 = 0. So T p′x′0 = ∥T p′∥x′0 or T p′x′0 = −∥T p′∥x0. Let

0 < α < 1 be given then from the definition of m,

⟨αT p′xo, xo⟩ ≤ ⟨αT p′xo, xo⟩ + ⟨Mxo, xo⟩ = ∥T p′∥

or

⟨αT p′xo, xo⟩ ≤ ⟨αT p′xo, xo⟩ − ⟨Mxo, x⟩ = −∥T p′∥
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Theorem 4.6. Let T be NA(H), p-normal SA compact operator with

D ⊃ σ(T ) with a positive measure dµx. Then w(T ) is NA

with |f(T )| ≤ ∥f∥ and f is in R(D).

Proof. If D ⊃ σ(T ), then Re(1 − zT )−1 ≥ 0 is equivalent to w(T ) ≤ 1,

for every {z ∈ C : |z| < 1} with series expansions giving

(1 − zT )−1 = 1 +
∞∑
n=1

znT n.

Thus

⟨Re(1 − zT )−1x, x0⟩ = ⟨1 +
∞∑
n=1

zpT px0, x0⟩

= ∥x0∥ +
∞∑
n=1

zp⟨T px0, x0⟩.

By p-normality of T , then ⟨T nx0, x0⟩ is norm-attainable for n ≡ p.

Therefore, a measure µx which is also positive exists on [0, 2π] such that

∥x0∥ +
∑∞

n=1 z
p⟨T px0, x0⟩∥ takes the integrand form of

∫
1

1−zeiθ
dµx0θ for

θ ∈ [0, 2π] and |z| < 1 which can be expanded to obtain

⟨T px0, x0⟩ = 2

∫
einθdµx0(θ)n = 1, 2, ... (4.2.3)

Application of equation 4.2.3 to the polynomial f(z) =
∑n

k=1 αkz
k gen-

erates ⟨f(T )px0, x0⟩ = 2
∫
fn(einθ)dµx0(θ), n = 1, 2, .. Given that ∥f∥ ≤ 1,
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then ∥f(T )p∥ is bounded and thus

⟨(1 +
∞∑

m=1

zpf(T )p)x0, x0⟩ = ∥x0∥2 + 2
∞∑

m=1

zp
∫
f(eiθ)ndµx0(θ)

=

∫
1

1 − zf(eiθ)
dµx0(θ).

Since the part of the integrand is positive, the above proposition takes

over.

Banach spaces have a variety of properties which determines the behavior

of operators which act upon them. We consider such properties as density,

reflex, e.t.c in this section. For the sake of clarity, the subset of B(X, Y )

will be denoted by NA(X, Y ) consisting the NAO. The following two

theorems due to James and Bourgain are imperative. We have show the

condition for norm-attainability of compact operators acting on Lp.

Lemma 4.7. Suppose H1 and H2 are two L2 spaces with weak topolo-

gies Hw
1 and Hw

2 respectively. Let T be a linear operator from H1 to H2

Consequently, T is continuous from Hw
1 to Hw

2 and vice versa.

Proof. Let T : H1 → H2 be a linear operator. We want to show that T

is continuous from Hw
1 to Hw

2 , and vice versa. First, assume that T is

continuous from Hw
1 to Hw

2 . Let l ∈ H∗
2 be an arbitrary linear functional

on H2. Then, the function l ◦ T : H1 → K is linear, and it is continuous

with respect to the weak topology on H1, since for any net (xα)α∈A in H1

that converges weakly to some x ∈ H1, we have

l(T (xα)) = l(T (xα)−T (x)+T (x)) → l(0)+l(T (x)) = l(T (x)), as α → ∞,

where we used the linearity of l, the continuity of T from Hw
1 to Hw

2 , and
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the fact that l(0) = 0. Therefore, by the definition of the weak topology

on H2, we conclude that T is continuous from H1 to H2. Conversely,

assume that T is continuous from H1 to H2. Let (xα, yα)α∈A be a net in

the graph of T , i.e., a net in H1 ×H2 such that yα = T (xα) for all α ∈ A.

Suppose that this net converges weakly to some (x, y) ∈ H1×H2, i.e., for

any linear functionals f ∈ H∗
1 and g ∈ H∗

2 , we have

f(xα) → f(x) and g(yα) → g(y), as α → ∞. Then, since T is contin-

uous from H1 to H2, we have g(yα) = g(T (xα)) → g(T (x)), as α → ∞.

By the uniqueness of limits in K, we must have g(y) = g(T (x)), for all

linear functionals g ∈ H∗
2 . This implies that y − T (x) = 0, since the

linear functionals on H2 separate points. Therefore, we have shown that

(x, y) ∈ G(T ), where G(T ) denotes the graph of T . This means that the

graph of T is closed with respect to the weak topology on H1×H2, which

we denote by (H1×H2)
w. This topology is induced by the product of the

dual spaces of H1 and H2, i.e., (H1 ×H2)
w = (H∗

1 ×H∗
2 )∗. By the closed

graph theorem, we conclude that T is continuous from Hw
1 to Hw

2 .

In the following proof, we establish the James Theorem, a well-known

result, as a prerequisite for our forthcoming result

Theorem 4.8 (Known James Theorem). The James theorem states that

a Banach space X is reflexive if and only if every continuous linear func-

tional f on X attains its supremum on the closed unit ball in X, i.e.,

there exists x ∈ X with ∥x∥ ≤ 1 such that f(x) = ∥ f∥.

Proposition 4.9. Let T be an element of B(H1, H2). Then T ∈ NA(H)

iff a L2 space H2 is a finite dimensional and H1 is reflexive.

Proof. Let H2 be a space of finite dimensions and that T ∈ B(H1, H2).
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SinceH1 is a reflexive space, the unit ball Ux inH1 becomes compact(weakly).

If the mapping T is continuous when considering the topologies induced

by the norms on H1 and H2, respectively, and the transformation from

H1 to H2 is done continuously, then T will also be continuous when con-

sidering the weak topologies on H1 and H2. So T maps compact(and

weakly) sets of H1 compact(and weakly) sets in H2. So T (Ux) becomes

weakly and compact in H2. Norm topology and weak topology of H2

coincide because H2 is finite dimensional, therefore T (Ux) is compact,

hence T is norm-attainable. Conversely suppose that all T ∈ B(H1, H2)

are norm-attainable in finite dimensional T , then by James theorem, H1

is reflexive.

Corollary 4.10. If H1 is reflexive and H2 a finite dimensional Banach

space, then any compact T ∈ B(H1, H2) is NA.

Proof. Assume that T in B(H1, H2) is bounded and linear, then by propo-

sition 4.9 , when H1 is reflexive, then T (Ux) becomes closed. Furthermore,

provided T is compact, then T (Ux) is also compact hence T is NA. On

the other hand, if T (Ux) is arbitrary and T has upper and lower bounds

and is also linear, then T (Ux) is bounded. So the closure of T (Ux) is also

compact since H2 is finite dimensional.

Proposition 4.11. Let T be a compact operator on a Banach space X.

If X is reflexive, then T is norm-attainable.

Proof. Assume that X is reflexive and T is a compact operator on X. We

want to show that T is norm-attainable. Let f be a norm-attaining linear

functional on X, which means there exists a unit vector x ∈ X such that
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f(x) = ∥f∥. Since T is compact, it is also continuous. Therefore, we can

calculate the norm of T as follows:

∥T∥ = sup {∥Tx∥ : x ∈ X, ∥x∥ = 1} ≥ ∥Tf∥ = |f(Tx)| = |T ∗(fx)|.

Equality occurs when x = T ∗(f)
∥T ∗(f)∥ . Therefore, T is norm-attainable.

4.3 OP in NA(H)

In this section, we present the proofs for the norm-attainability of classical

orthogonal polynomials. We note that for m ̸= n, the zero property for

the norm is immediate and, therefore, omitted.

Proposition 4.12. Let ϕn(xC)
∞
n=0 be the sequence of Chebyshev orthog-

onal polynomials defined on the interval [−1, 1] with respect to the weight

function w(xC) = (1−x2)−1/2. Then, for any non-negative integer n, the

polynomial ϕn(xC) is norm-attainale in H, i.e.,∥ϕn(xC)∥H = K.

Proof. Let H be a Hilbert space with inner product ⟨·, ·⟩. We want to

show that for any non-negative integer n, there exists a constant K > 0

such that ∥ϕn(x)∥H = K. Consider the Chebyshev orthogonal polynomial

ϕn(xC). By definition, ϕn(xC) is orthogonal to all lower degree Chebyshev

polynomials, that is,

⟨ϕn(xC), ϕm(xC)⟩ = 0 for all m < n.
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Now, let’s consider the norm of ϕn(xC) in H. We have:

∥ϕn(xC)∥2H = ⟨ϕn(xC), ϕn(xC)⟩ +
∑
m<n

⟨ϕn(xC), ϕm(xC)⟩

= ⟨ϕn(xC), ϕn(xC)⟩ + 0 (by orthogonality)

= ⟨ϕn(xC), ϕn(xC)⟩.

Since ϕn(xC) is a non-zero polynomial, then ⟨ϕn(xC), ϕn(xC)⟩ > 0. Let

K = ⟨ϕn(xC), ϕn(xC)⟩. Then, we have:

∥ϕn(xC)∥2H = ⟨ϕn(xC), ϕn(xC)⟩ = K2.

Hence, we can conclude that ∥ϕn(xC)∥H = K, where K > 0.

Proposition 4.13. Let w(x) = e−x2
be a normal distribution and Hn(x)

be Hermite polynomials defined on the interval (−∞,∞). Then Hn(x) is

NAPn for some n ∈ N+.

Proof. Consider a space that can be measured L2(X,µ) where some mea-

sure µ is specified on the S of the X support. For Hermite polynomials,

Rodriguez’s formula takes the form:

Hn(x) =
(−1)n

w(x)
Dnw(x) = (−1)nex

2

Dne−x2

, n = 0, 1, 2, ...

∀x ∈ X. Suppose x0 ∈ X so that x0 ∈ Ux, that is, ∥x0∥ = 1. Then

∥Hn(x0)∥2 takes the formula

∫ ∞

−∞
e−x2

Hm(x0)Hn(x0)dx0 = (−1)n
∫ ∞

−∞
Hm(x0)D

ne−x2
0d(x0)
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for m < n. If we perform n integrations on the right-hand side of the

equation, it will eventually vanish. When we consider the case where

m = n, and apply n successive integration by parts to the right-hand side

of the equation, it can be deduced that the right-hand side leads to the

following result.

∫ ∞

−∞
e−x2

0Hn(x0)Hn(x0)dx0 = (−1)n
∫ ∞

−∞
Hn(x0)D

ne−x2
0dx0

=

∫ ∞

−∞
DnHn(x0)e

−x2
0dx0

= αnn!

∫ ∞

−∞
e−x2

0dx0 = 2nn!
√
π.

Thus for x0 ∈ Ux, ∥Hn∥ = sup{2nn!
√
π : ∥Hn(x0)∥ ≤ 2nn!

√
π∥x0∥}, that

is, ∥Hn∥ = ∥Hn(x0)∥.

Before we proceed with the next proof, we introduce a key definition that

will be essential for our upcoming result

Definition 4.14. A gamma distribution is a type of continuous proba-

bility distribution that is defined by two parameters: a shape parameter

(α) and an inverse scale parameter (β). That is, f(x) = βαxα−1e−βx

Γ(α)
. Here,

x is the random variable, αis the shape parameter, β is the inverse scale

parameter and Γ(α) is the gamma function.

Proposition 4.15. Let w(x′1) = e−x′2x′(−α) be gamma distribution func-

tion for some x′1 ∈ X and α > −1. Then the Laguerre polynomials

L
(α)
n (x′1) ∈ NAPn in some interval (0,∞) and for somen ∈ N, n > 0.
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Proof. For some n ∈ N, L
(α)
n (x) is defined by Rodriguez’s formula as

Lα
n(x′1) = w−1 1

n!
(x)Dn[w(x′1)xn]

=
1

n!
e−xx−αDn[e−xxn+α], n = (0, 1, 2, ...)

Application of the rule due to Leibniz on the above formula generates

Lα
n(x′) =

n∑
k=0

(−1)k

 n+ α

n− k

 x′k

k!
, n = 0, 1, 2, ...

in some arbitrary x′1 ∈ X. Taking X = R and a positive Borel measure

µ. Then P
(α)
n (x′1) : L2(x′, µ) → R is defined and has a norm given by

hn = ∥P (α)
n (x′)∥2 =

∫ ∞

0

x′α

ex′ L
α
m(x′)Lα

n(x′)dx

in some x′ ∈ X and m,n ∈ {0, 1, 2, ...}. Suppose x0 ∈ Ux0 , that is,

∥x0∥ = 1 and µn =
∫∞
0
e−x0xn+α

0 dx0. Then limn→∞ hn = t, n = 0, 1, 2, ...

exists for some t. Thus for α > −1 and µ = Γ(n+ α+ 1) > 0, and so the

Rodrigues formula changes thus:

∫ ∞

0

e−x0xα0L
(α)
m (x0)L

(α)
n (x0)dx0 =

1

n!

∫ ∞

0

L(α)
m (x0)D

n[e−x0xn+α
0 ]dx.

By performing integration by parts n times on the right-hand side of

the given integral equation, it is observed that the resulting expression

becomes zero. This holds true when n is less than m. When n is equal

to m, integrating n times using the same method yields the following
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outcome

∫ ∞

0

DnL(α)
n (x0)e

−x0xn+α
0 dx0 = λnn!

∫ ∞

0

e−x0xn+α
0 dx0

= (−1)nΓ(n+ α + 1).

Thus;

∥Lα
n∥ = sup

∥x0∥=1

{
Γ(n+ α + 1)

n!
:

Γ(n+ α + 1)

n!
∥x0∥ ≥ ∥Lα

n(x0)∥
}

for some natural number n.

Proposition 4.16. Given be an arbitrary weight function w(x′1) = 1,

for some x′1 ∈ X. Then Legendre polynomials Pn(x′1) ∈ NAPn for some

element x′1 of X, and n = 0, 1, 2, ...

Proof. There exists some n ∈ N , Pn(x′1) is given by Rodrigues formula

as

Pn(x′1) = 2−n (−1)n

n!
w−1(x′1)Dn[w(x′1)(1 − x2)n] =

(−1)n

2nn!
Dn[(1 − x2)n],

∀n = 0, 1, 2, ... which is Jacobi polynomial’s special case for α = β = 0

and Dn defined by Leibniz’s rule. Let X = R also µ to represent a Borel

measure supported on X. Then Pn(x′1) : L2(X,µ) → R is defined on X

and has a norm defined by

hn = ∥Pn(x′1)∥2 =

∫ 1

−1

Pm(x′1)Pn(x′1)dx

in some x′1 in X, m,n = {0, 1, 2, ...}. Suppose that x0 ∈ X, exists with

∥x0∥ = 1. Then integrating by parts n times, the Rodrigues formula
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above gives

∫ 1

−1

Pm(x0)Pn(x0)dx =
(−1)n

2nn!

∫ 1

−1

Pm(x0)D
n[(1 − x20)

n]dx0

=
1

2nn!

∫ 1

−1

DnPm(x0)(1 − x20)
ndx0

and vanishes for m < n. When m = n, with substitution 1−x0

2
= t0,

n = 0, 1, 2, ... and integrating (1 − x20)
ndx0 from -1 to 1, we get

∫
(1 − x20)

ndx0 =

∫ 1

−1

(1 + x0)
n(1 − x0)

ndx0

=

∫ 1

0

(2t0)
n(2 − 2t0)

n2dx0 = 22n+1A(n+ 1, n+ 1)

= 22n+1[Γ(n+ 1)Γ(n+ 1)][Γ(2n+ 2)]−1

= [2n+1(n!)2][(2n+ 1)!]−1

Now,

∥Pn∥ = sup [2n+1(n!)2][(2n+ 1)!]−1 : [2n+1(n!)2][(2n+ 1)!]−1∥x0∥

≥ ∥Pn(x0)∥, ∥xn∥ = 1

We will now introduce a crucial definition before proceeding with the

proof of our next result.

Definition 4.17. The beta distribution is a two-parameter continuous

probability distribution. The two parameters of the beta distribution are

the shape parameter α and the scale parameter β. The beta distribution
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can be written in the following form:

f(x;α, β) =
Γ(α)Γ(β)

Γ(α + β)
xα−1(1 − x)β−1

Where: x > 0, α > 0, β > 0, Γ(α) is the gamma function, which is a

special function that is defined for all positive values of α.

Proposition 4.18. Assume that w(x′1) = (1 − x′1)α1(1 + x′1)α2 to be a

Beta distribution function for P
(α1,α2)
n (Jacobi polynomials), n = 0, 1, ...

Then P
(α1,α2)
n (x) is NAPn for the interval (−1, 1) in some x in X.

Proof. The polynomial P
(α1,α2)
n (x′1) defined by Rodrigue’s formula

P (α1,α2)
n (x′1) = 2−n (−1)n

n!
w−1(x′1)Dn[w(x′1)(1 − x′

2
1)n]

which equals to

2−n(−1)n

n!
(1 − x′1)−α1(1 + x′1)−α2Dn[(1 − x′1)n+α1(1 + α1)

n+α2 ]

and take the form P
(α1,α2
n (x′1) equals to

(−1)n2−n
∑m

k=0(−1)k

 m+ α1

k

 m+ α2

m− k

 (1 + k)k(1− x′1)m−k,

n = 0, 1, 2, ...

We consider X = R with µ as a positive Borel measure supported on X.

Then P
(α1,α2)
n (x′1) : L2(X,µ) → R is defined and has a norm defined by

hn = ∥P (α1,α2)
n (x′1)∥2

=

∫ 1

−1

(1 + x′1)α2(1 − x′1)α1P (α1,α2)
m (x′1)P (α1,α2)

n (x′1)dx
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for some x′1 ∈ X. Suppose that x0 ∈ X, exists with ∥x0∥ = 1, and

α1, α2 > −1, ∀m,n ∈ {0, 1, 2, ...}. Then integrating by parts the Ro-

drigues formula above n times gives for m equals to n,∫ 1

−1
(1 + x0)

α2(1 − x0)
α1{P (α1,α2)

n (x0)}2dx0 to be

=
2−n(−1)n

n!

∫ 1

−1

P (α1,α2)
n (x0)D

n[(1 + x0)
n+α2(1 − x0)

n+α1 ]dx0

=
2−n

n!

∫ 1

−1

DnP (α1,α2)
n (x0)[(1 + x0)

n+α2(1 − x0)
n+α1 ]dx0

=
2−n(n+ α1 + α2 + 1)n

n!

∫ 1

−1

(1 + x0)
n+α2(1 − x0)

n+α1dx0

=
2−nΓ(2n+ α1 + α2 + 1)

Γ(n+ α1 + α2 + 1)n!

∫ 1

−1

(1 + x0)
n+α2(1 − x0)

n+α1dx0

= [2(2n+α1)2(α2+1)]
Γ(n+ α1 + 1)Γ(n+ α2 + 1)

(2n+ α1 + α2 + 1)Γ(2n+ α1 + α2 + 1)

for (n = 0, 1, 2, ...). Thus

∥L(α1,α2)
n ∥ = sup

{
Γ(n+ α1 + 1)Γ(n+ α2 + 1)

(2n+ α1 + α2 + 1)Γ(2n+ α1 + α2 + 1)

such that

∥L(α1,α2)
n (x0)∥ ≤ Γ(n+α1+1)Γ(n+α2+1)

(2n+α1+α2+1)Γ(2n+α1+α2+1)
∥x0∥ = 1

}
, for ∥x0∥ = 1.

Theorem 4.19. The claims below are both true and equivalent with re-

spect to the norm-attainability of the function pn(x) on the interval [−1, 1]:

(i). (pn(x))
1
t is a norm in Rn for some t ∈ R, t ≥ 2, n ∈ R.

(ii). pn(x) is convex and positive definite

(iii). for α1, α2 ∈ K and x, y in [−1, 1] with x ̸= y, then

pn(α1x+ α2y) ≤ α1pn(x) + α2pn(y).
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Proof. (i.) (i) ⇒ (ii). Let t ∈ R, t ≥ 2, ∥pn(x)∥ = (pn(x))
1
t . By

the preceding propositions 4.13, 4.15, 4.16 and 4.18 above, ∥pn(x)∥

exists and it is positive. Thus pn(x) is also positive. Furthermore

given α1, α2 ∈ K and pn(x), then

∥α1pn(x) + α2pm(x)∥ =

(√
2α1

2n+ 1
+

√
2α2

2m+ 1

)

≤ α
1
2
1

√
2

2n+ 1
+ α

1
2
2

√
2

2m+ 1

and from Cauchy-Schwarz inequality we get ≤ α1∥pn(x)∥+α2∥pm(x)∥.

Thus (pn(x))
1
t is also convex.

(ii.) (ii) ⇒ (iii). Suppose pn(x) is convex and positive definite. Let also

pn(x) not be strictly convex. Then for some x0, y0 ∈ [−1, 1] with

x0 ̸= y0 for α1 and α2 in K, α1 + α2 = 1 such that

pn(x)(α1x0 + α2y0) = α1pn(x0) + α2pn(y0). Defining f(α1) by

f(α1) = pn(x0 + α1(y0 − x0)), then it is noteworthy that f restricts

pn to the line which further shows that pn is convex and positive

definite in α1 (given that α2 = 1 − α1 or α1 = 1 − α2). Let

g(α1)+(f(1)−f(0))α1−f(0) = f(α1). Because g(α1) is the sum of

two convex orthogonal polynomials, it is also convex. Furthermore

for α2, α1 ∈ K, α1 + α2 = 1, we get g(x) ≥ 0. Indeed since f(α1) is

convex f(α1x0+α2y0) ≥ α1f(x0)+α2f(y0), x0, y0 ∈ [−1, 1] . Clearly

g(0) = g(1) = 0. The convexity and non-negativity of f on [-1,1]

means that g(α1) = 0 which implies that g = 0.

Therefore f has finite values and is positive and thus f is constant,

which is a contradiction, because limα1→∞ f(α1) = ∞. Because

limα1→∞ ∥pn(x0+α1(y0−x0))∥ = ∞ and f(α1) = pn(x0+α1(y0−x0))
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therefore limα1→∞ f(α1) = ∞. pn(x) is positive definite, so for some

x in [−1, 1] pn(x) > 0. Now let x = argmin∥x∥=1pn(x) and λ be a

positive scalar, so T =
(

λ
pn(x)

) 1
t
. For any x ∈ [−1, 1] with ∥x∥ = T ,

it can be established that pn(x) ≥ min∥x∥=Tpn(x) ≥ T ∗pn(x) = λ.

Thus lim∥x∥→∞ pn(x) = ∞.

(iii.) (iii) ⇒ (i). For some positive λ ∈ R, then (pn(x))
1
t is homogeneous

because ∥λpn(x)∥ = |λ|∥pn(x)∥. For any (x, y) within the range of

[−1, 1] with x ̸= y then pn(y) > pn(x) + ∇pn(x)T (y − x). Clearly

pn(x) > 0 for x = 0 since pn(0) = 0 = ∇pn(0).

Thus pn(x) is a positive definite polynomial and so is ∥pn(x)∥. Sup-

pose f = (pn(x))
1
t with Mf = {x : (pn(x))

1
t ≤ 1} = Npn and

Mf = {x : pn(x) ≤ 1} = Npn . Now because pn(x) is strictly con-

vex, Npn is also convex and so is Mf . For some x, y in [−1, 1], then

x
pn(x)

∈ Mf and y
pn(y)

∈ Mf . By convexity of Mf , as a result, we

obtain that f
(

f(x)
f(x)+f(y)

. x
f(x)

+ f(y)
f(x)+f(y)

. y
f(y)

)
≤ 1 and by homogene-

ity of f we get 1
f(x)−f(y)

. f(x + y) ≤ 1. Hence ∥pn(x)∥ meets the

triangle inequality criterion.

Properties of univariate orthogonal polynomials touching on their zeros,

three recurrence formula and others make them useful in the analysis of

differential equations. These properties can be extended to multivariate

orthogonal polynomials with some modifications [96]. Given a monomial

x ∈ R of several variables, xα1
1 , xα2

2 ... x
αd
d we denote by |d| = α1 + ...+αn

the monomial’s overall degree. For such monomial let Borel positive

measure µ on Rd generate finite moments given by µα =
∫
Rd x

αdµ(x)
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on which application of Gram-schmidt process involving the monomials

with respect to inner product gives multivariate orthogonal polynomials∫
Rd f(x)g(x)dµ(x) in L2(µ). The major problem with multivariate orthog-

onal polynomials is that they are not unique. Furthermore different total

orders give different sequences of orthogonal polynomials. We therefore

consider the following spaces instead of fixing total order.

NAP 0 = {P : P ∈ Πd
n, and,∃∥Pw(xd)∥ <∞,∀xd ∈ Rd, with, ∥xd∥ = 1}

Πd
n = {P : ⟨P,Q⟩ = 0,∀Q ∈ Πd, degP > degQ}

Specifically, this refers to collection of orthogonal polynomials of degree

n with regard to µ.

V d
n(∀Q∈Πd

n−1)
= {P ∈ Πd

n : ⟨P,Q⟩ = 0}

NAΠd
n = {P ∈ Πd

n : PinNAP 0}.

A multivariate sequence of polynomials Pj ∈ Πd
n, j ∈ N is called orthogo-

nal if ⟨Pi, Pj⟩ = δij. The space V d
n has a variety of bases which need not

be orthonormal.

Proposition 4.20. If [{pn}∞m=0]m∈N0 = {pdα : |α| = n}, where p0 equals

to 1, is a family of multivariate polynomials Πd
n. Then the following are

equivalent:

(i). pn is NAΠd
n for each m ∈ N0.

(ii). pn(xd) is both convex and positive function for xd ∈ Rn, m ∈ N0

(d ≤ n).
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(iii). pn is strictly convex for all m ∈ N0.

Proof. (i.) (i) ⇒ (ii). Consider the function for product weight

W (x) = w1(x1), ...wd(xd) and Gegenbauer polynomials Cλ
k (x) with

monomials, pnk ∈ Π2
n defined by

pnk(x, y) = hk,nC
k+µ+ 1

2
n−k (x)(1 − x2)

k
2Cµ

k

(
y√

1−x2

)
, 0 ≤ k ≤ n on

B2 = {(x, y) : x2 +y2 ≤ 1}. The orthogonality of these polynomials

are the existence of the functional hn can be verified by the formula

∫
B2

p2n(xy)p2m(xy)Wµ(xy) =

∫ 1

−1

∫ (1−x2)
1
2

−(1−x2)
1
2

p2n(xy)p2m(xy)Wµ(xy)

which equals to∫ 1

−1

∫ 1

−1
p2n(x, (1 − x2t)

1
2 )p2m(x, (1 − x2t)

1
2 )(1 − x2)dxdt for

y = t ⇒ dy = dt. Application of y = r sin θ, x = r cos θ (as polar

coordinates) and Chebyshev polynomials Tm and Um of the first and

the second kinds the families of monomials

hj,1p
(µ− 1

2
,n−2j+ d−2

2
)

j (2r2 − 1)rn−2j cos(n− 2j)θ , 0 ≤ 2j ≤ n,

hj,2p
(µ− 1

2
,n−2j+ d−2

2
)

j (2r2 − 1)rn−2j sin(n− 2j)θ , 0 ≤ 2j ≤ n− 1

with normalization constants hnj,i. For each n ∈ N0, these monomials

generate n+ 1 polynomials on B2 of degree verified by

∫
B2

p2n(B2)p2m(B2)WB2

µ (B2) =

∫ 1

0

∫ 2π

0

p2n(B2)p2m(B2)dθrdr

where the relations r = ∥x∥, Tm

(
x

∥x∥

)
= cosmθ and
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Um−1

(
x

∥x∥

)
= sinmθ

sin θ
hold. A set

pkn(B2) = C
µ+ 1

2
n

(
a cos

kπ

n+ 1
+ b sin

kπ

n+ 1

)
, 0 ≤ k ≤ n

of monomials in particular, for a, b ∈ B2

pkn(B2) =
1√
π
Un

(
a cos

kπ

n+ 1
+ b sin

kπ

n+ 1

)
, µ =

1

2
, 0 ≤ k ≤ n.

also establish an orthogonal basis with regard to the Lebesgue mea-

sure on B2[22]. The collection of polynomials

V n
k (B2) = xkyn−k + q(B2) generated

(1 − 2(t1a+ t2b) + ∥t∥2)−µ− 1
2 =

∞∑
n=0

n∑
k=0

tk1t
n−k
2 V n

k (B2), t = (t1, t2)

where q ∈ Π2
n−1 and

Un
k (B2) = (1 − a2 − b2)−µ+ 1

2
∂k

∂ak
∂n−k

∂bn−k
(1 − a2 − b2)n+µ− 1

2

are orthogonal since computation of hn by integration by parts gives

∫
B2

V n
k (a, b)Un

j (B2)WB2

µ (B2) =

 hnδnm k = j

0 k ̸= j.

Given λ1, λ2 ∈ K, λ1 + λ2 = 1 and two sets of monomials pnk(B2)

and pnk(B2). From theorem 4.19 above, the rest follows. Indeed by
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Cauchy-Schwarz inequality

pn(B2)(λ1p
n
k(B2)+λ2p

n
k(B2)) ≤ λ1pn(B2)(−→p n

k(B2))+λ2pn(B2)(pnk(B2))

(4.3.1)

for (a, b) ∈ B2.

(ii.) (ii) ⇒ (iii). With the following substitutions, the supposition fol-

lows from theorem 4.19 above. pn(x) ≡ pn(B2), a0 ≡ pnk(B2) and

b0 ≡ pnk(B2). Finally, (iii) ⇒ (i) (See the substitutions above in

4.3.1).

4.4 Relationship between OP and NAO in

NA(H)

Consider a non-decreasing function α(x) defined on the interval [a, b],

and let g(x) be a measurable function in the Lebesgue space Lp(X, ξ1, µ),

where x ∈ X. We assume that
∫ b

a
|g(x)|pdα(x) exists. When α(x) = x

and p = 2, we denote this space as L2(a, b). Exploiting the Hilbert space

structure, we can define the inner product ⟨g1, g2⟩ =
∫ b

a
g1(x)g2(x)dα(x)

for monotonic α(x). This definition can be extended to cases where α(x)

has bounded variation. If the limits a and b of the interval [a, b] are finite,

then α(x) is bounded, and g(x) ∈ Lp(x) is continuous. In such cases, the

integration formula
∫ b

a
α(x)dg(x) +

∫ b

a
g(x)dα(x) = g(b)α(b) − g(a)α(a)

is applicable. Here, the term dα(x) can be interpreted as a continuous

or discontinuous mass distribution within the interval [a, b], and the limit
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[x1, x2] ⊂ [a, b] contributes a mass defined by [α(x2)−α(x1)]. When α(x)

is absolutely continuous, the expression
∫ b

a
g1(x)g2(x)dα(x) can be writ-

ten as
∫ b

a
g1(x)g2(x)w(x)d(x) if the integral exists according to Lebesgue’s

theory. In this case, w(x) is a positive and Lebesgue measurable func-

tion, and
∫ b

a
w(x) > 0. The function w(x) is referred to as the weight

function on the interval [a, b]. The total mass on the interval [x1, x2] is

given by
∫ x2

x1
w(x)dx for a distribution w(x)dx. Suppose [a, b] is finite with

dα(x) or w(x) as fixed distribution and vector functions in L2
α(a, b). In

the sequel, we consider linear differential operators which act on a space

of continuous and differentiable functions C0([0, 1]) and C∞([0, 1]).

Proposition 4.21. Consider a second order differential operator T (u)

expressed by T (u) = c1D
2(u)+c2(D(u)+c3(u). Given u1, u2 ∈ C∞([0, 1]),

then

⟨u2, Tu1⟩ − ⟨T ∗u2, u1⟩ = [(u2u
′
1 − u′2u1) + (c2 − c1)u2u1]

1
0

for an adjoint of T defined by

T ∗u2 = (u2)
′′ − (c2u2)

′ + c3u2, c1, c2, c3 ∈ C0([0, 1]).
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Proof. Applying ⟨, ⟩ for the usual L2([0, 1]), and integrating by parts give:

⟨u2, Tu1⟩ =

∫ 1

0

u2(c1D
2u1 + c2Du1 + c3u1)dx

=

∫ 1

0

(c1u2D
2u1 + c2u2Du1 + c3u2u1)dx = u2Du1

+ c2u2u1 +

∫ 1

0

{−(Du2Du1 + c2Du2 + c3u2 + c3u2u1}dx

= [u2Du1 − u2)u1 + c3u2u1]
1
0 +

∫ 1

0

(D2u2 + c2Du2 + c3u)dx

Example 4.22. If c1 = 1, c2 = −2x, c3 = 2n, n = 0, 1, 2...., then Tu is a

differential operator acting on a space of Hermite orthogonal polynomials

Hn(x) in C∞([0, 1]). So T (Hn(xH)) = D2Hn(xH)−2xDHn(x)+2nHn(xH)

has defined adjoint expressed as

T ∗(Hn(xH)) = D2Hn(xH) + 2xDHn(xH) + 2nHn(xH), n = 0, 1, 2, ...

On integration by parts, we have:

⟨u2, Tu1⟩ =

∫ 1

0

u2(u
′′
1 − 2xu′1 + 2nu1)dx

=

∫ 1

0

(u2u
′′
1 − 2xu2u

′
1 + 2nu2u1)dx

= u2u
′
1 − 2xu2u1 +

∫ 1

0

{−(u2)
′u′1 + 2x(v)′ + 2nu2u1}dx

= [u2u
′
1 − (u2)u1 + 2nu2u1]

1
0 +

∫ 1

0

((u2)
′′ + 2x(u2)

′ + 2nu1)dx

Example 4.23. Let c1 = x, c2 = (1−x+α), c3 = n for n = 0, 1, 2.... then

Tu is a differential operator defined on Laguerre orthogonal polynomials
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L
(α)
n (x) ∈ C∞([0, 1]). Thus

T (L(α)
n )(xL) = xD2L(α)

n (xL) + (1 − x+ α)DL(α)
n (xL) + nL(α)

n (xL)

has an adjoint given by

T ∗(L(α)
n (xL) = xD2L(α)

n (xL) − (1 − x+ α)DL(α)
n (xL) + nL(α)

n (xL)

On integrating by parts we have:

⟨u2, Tu1⟩ =

∫ 1

0

u2(xu
′′
1 + (α + 1 − x)u′1 + nu1)dx

=

∫ 1

0

(xu2u
′′ + (1 − x+ α)u2u

′
1 + nu2u1)dx.

This equals to

u2u
′
1 + (1 − x+ α)u2u1 +

∫ 1

0
{−(u2)

′u′1 + (1 − x+ α)(u2)
′ + nu2u1}dx

and finally equals to

[u2u
′
1 − (u2)u1 + nu2u1]

1
0 +

∫ 1

0
(x(u2)

′′ + (1 − x+ α)(u2)
′ + nu1)dx

Example 4.24. Let c1 = (−x2 + 1), c2 = [β − α(2 + α + β)],

c3 = n(n+1+α+β) for n = (0, 1, 2...). T (u) is then a differential operator

defined on Jacobi orthogonal polynomials P
(α,β)
n (xJ) ∈ C∞([0, 1]),

(n = 0, 1, 2...). Thus

T (P
(α,β)
n (xJ)) = (−x2 + 1)D2P

(α,β)
n (xJ) +β−α(2 +α+β)xJ)DP

(α,β)
n (xJ)

+ n(n+ α + β + 1)P
(α,β)
n (xJ)

has an adjoint,

T ∗(P
(α,β)
n (xJ) = (−x2 + 1)D2(P

(α,β)
n (xJ)

− (β − α(2 + α + β)xJ)D(P
(α,β)
n (xJ) + n(n+ α + β + 1)(P

(α,β)
n (xJ).
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Therefore integrating by parts gives:

⟨u2, T v⟩ =

∫ 1

0

u2((−x2 + 1)u′′1 + (β − α(2 + α + β)xJ)u′1 + P (α,β)
n (xJ))dx

=

∫ 1

0

((−x2 + 1)u2u
′′

+ (β − α(2 + α + β)xJ)u2u
′
1 + n(n+ 1 + α + β)u2u1)dx

= u2u
′
1 + ([β − α(2 + α + β)x])u2u1 +

∫ 1

0

{−(u2)
′u′1

+ (1 − x+ α)(u2)
′ + n(n+ 1 + α + β)u2u1}dx

= [u2u
′
1 − (u2)u1 + nu2u1]

1
0 +

∫ 1

0

((−x2 + 1)(u2)
′′

+ (β − α(2 + α + β)xJ)(u2)
′ + n(n+ 1 + α + β)P (α,β)

n (xJ))dx

Proposition 4.25. Let T (u) be defined as in 4.21 with c1, c2, c3 ∈ C0[0, 1]

and u1, u2 ∈ C∞[0, 1]. Then, T (u) is SA, that is,

⟨u1, Tu2⟩ − ⟨T ∗u1, u2⟩ = [u1(u2u
′
1 − u′2u1) + (c2 − c′1)u2u1]

1
0 holds.

Proof. Consider orthogonal polynomials u1, u2 ∈ C∞([0, 1]) for which

there exist sequences u1, u2 ∈ C∞([0, 1]) such that u1n −→ u1, u2n −→ u2.

Thus we have

⟨Tu1n, u2n⟩ − ⟨u1n, T ∗u2n⟩ = [c1(u′1nu2n − u1nu
′
2n) + (c3 − c′1)u1nu2]

1
0.

Because limu−→∞ Tu1n −→ Tu1 and limu−→∞ T ∗u2n −→ T ∗u2 with the

limits in L2((0, 1)), the boundary terms converge point wise.

Proposition 4.26. If T : L2([0, 1]) −→ L2([0, 1]) is an operator defined

as Tu = c1D
2(u) + c2D(u) + c3(u), then T is a closed operator.

Proof. Let (un) be a sequence in D(T ) such that un → u in L2([0, 1]) and

Tun → v in L2([0, 1]). We want to show that u ∈ D(T ) and Tu = v.

Since un ∈ D(T ), we have Tun = c1D
2(un) + c2D(un) + c3(un). Taking
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the limit of both sides as n→ ∞, we get

lim
n→∞

Tun = c1D
2(u) + c2D(u) + c3(u)

by the continuity of the differential operators D2 and D. Since Tun → v

in L2([0, 1]), we have limn→∞ Tun = v. Therefore,

v = c1D
2(u) + c2D(u) + c3(u)

which means that u ∈ D(T ) and Tu = v. Therefore, T is a closed

operator.

Proposition 4.27. Let c1, c2, c3 ∈ C0[0, 1] be real-valued function with

c1(x) > 0 for all x, y ∈ [0, 1]. The eigenvalue problem

c1D
2(u) + c2D(u) = −c3(u), with u(0) = u(1) = 0 has eigenfunctions

which form orthonormal basis of L2([0, 1]) and therefore normal.

Proof. Taking the inner products of c1D
2(u) + c2D(u) = −c3(u) with u

and integrating by parts, gives∫ 1

0
{c1D2|u|2 + c2|u|2}du = −c3

∫ 1

0
|u|2du. Let λ1 = min0≤x≤1 c1(x),

λ2 = min0≤x≤1 c2(x) and because c1 > 0, then λ1 > 0 and suppose c2 > 0

we get λ2 > 0 which contradicts the possibility of λ2 ≤ 0.

∫ 1

0

{λ1D2|u|2 + λ2D|u|2}du+ c3

∫ 1

0

|u|2du ≤ 0

So we get

λ1

∫ 1

0

D2|u|2du+ λ2

∫ 1

0

D|u|2du+ c3

∫ 1

0

|u|2du ≤ 0.
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This shows that T − λI has real values if λ22 ≥ 4λic3, hence λ1, λ2 forms

σT . So the SA resolvent operator Rλi
: i = 1, 2 is given by

Rλi
= (λiI − T ) : L2([0, 1]) −→ L2([0, 1]) for which

Rλi
f(x) = −

∫ 1

0
[gλi

(x, y)]f(y)dy, i = 1, 2 where gλi
is the Greens function

for T − λiI, i = 1, 2. Now
∫ 1

0

∫ 1

0
[gλi

(x, y)]2dxdy < ∞, i = 1, 2, since

λi is continuous for i = 1, 2. Therefore Rλi
is compact and Hilbert-

Schmidt. An orthonormal basis L2([0, 1]) exists consisting of {un : n ∈ N}

of Rλi
whose eigenvalues λin : n ∈ N such that limn−→∞ λin = 0. Since

(λiI−T )Rλi
= I we have un ∈ D(T ) and Tun = λinun where λ22n ≥ 4λinc3.

So limn−→∞ λin = ∞ and therefore T has complete orthonormal set of

eigenvalues which form a basis of L2([0, 1]).

Theorem 4.28. An operator T (u) defined as in 4.21 is not NA on

C0([0, 1]).

Proof. Suppose that u ∈ C0([0, 1]), u : Rm −→ Rn is a function on

which a derivative D(u(x)) exists for every single point x ∈ [0, 1], that is,

Du(x) : Rm −→ Rn(D2u(x) : Rm −→ Rn). Then by Lipschitz principle,

Du(x) is characterized as ux+ uh− u(x) = Du(x).h+ th, h −→ 0. Thus

Du(x) is defined such that its norm estimates is provided by

∥Dmu(x)∥ ≤

(
m∑
i=1

∣∣∣∣diu(x)

dxi

∣∣∣∣2
) 1

2

.

Now for each x ∈ [0, 1],

∥u(x)∥ = ⟨u(x), u(x)⟩ =

∫ 1

0

u(x)u(x)dx = 1

thus for a differential operator T (u), given by T (u) = c1D
2(u)+c2D(u)+u,
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the norm estimates for operator takes the form

∥T (u)(x)∥ ≤ |c1|

(
2∑

i=1

∣∣∣∣du(x)

dx

∣∣∣∣2
) 1

2

+ |c2|

(
1∑

i=1

∣∣∣∣du(x)

dx

∣∣∣∣
)

+ |c3|.

Thus the operator T (u) is SA but unbounded hence not NA.

Proposition 4.29. Let T (u) be as defined in proposition 4.21. Then T

is normal and has orthogonal eigenspaces.

Proof. We show that T is diagonalizable by demonstrating that it has

orthogonal eigenspaces. Suppose T has an eigenvalue λ and let u represent

the corresponding eigenvector. Then we have:

T (u) = λuc1D
2(u) + c2D(u) + c3u

= λuc1D
2(u) + c2D(u) + (c3 − λ)u = 0.

We can rewrite this equation as a homogeneous second-order linear dif-

ferential equation c1u
′′ + c2u

′ + (c3 − λ)u = 0. Now, let’s assume both

u1 and u2 are linearly independent solutions of this differential equation.

Since T is a second-order operator, we expect to find two linearly indepen-

dent eigenvectors corresponding to each eigenvalue. Therefore, we seek a

second solution u2. By employing the technique of variation of parame-

ters, we can determine the second solution u2 in the following manner:

u2(x) = u1(x)
∫

e
−

∫ c2
c1

dx

u2
1(x)

dx. The solution u2 is linearly independent of u1

as long as the integral above is not identically zero. The linear indepen-

dence of solutions u1 and u2 implies that they can be used as a basis

for the eigenspace corresponding to the eigenvalue λ. Moreover, these

solutions are orthogonal with respect to the inner product induced by the
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differential operator T . Hence, we have shown that for each eigenvalue

λ of T , ∃ two linearly independent eigenvectors u1 and u2, forming an

orthogonal basis for the eigenspace associated with λ. Therefore, the op-

erator T is diagonalizable. Finally, suppose λi are eigenvalues of T for

i ∈ N. Then T takes the Jordan form. Let L = T−λiI with the condition

that ker(L) ⊂ ker(L2) ⊂ ... ⊂ ker(Ln). Then the least value of n for

ker(Ln = ker(Ln+1), is the greatest Jordan block. Thus for n = 1, the

diagonalizability of T holds because all of the Jordan blocks will be 1×1.

Therefore if ker(B) = ker(Bn) for n ≥ 1, the result is as required.

Proposition 4.30. Let T (u) be as defined in proposition 4.21 above, and

consider u1 and u2 belonging to the space C∞([0, 1]), which represents

infinitely differentiable functions defined on the interval [0, 1]. If the fol-

lowing conditions are satisfied:

⟨T (u1), T (u2)⟩ = ⟨T ∗(u1), T
∗(u2)⟩ and Ker(T ) = ker(T ∗) then the opera-

tor T becomes normal.

Proof. We need to show that if the two conditions are satisfied, then the

operator T is normal. First, let’s consider the inner product of T (u1) and

T (u2). Using the definition of T , we have:

⟨T (u1), T (u2)⟩ = ⟨c1D2(u1) + c2D(u1) + c3u1, c1D
2(u2) + c2D(u2) + c3u2⟩.
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Expanding this inner product, we get:

⟨T (u1), T (u2)⟩ = c1c
∗
1⟨D2(u1), D

2(u2)⟩ + c1c
∗
2⟨D2(u1), D(u2)⟩

+ c1c
∗
3⟨D2(u1), u2⟩ + c2c

∗
1⟨D(u1), D

2(u2)⟩

+ c2c
∗
2⟨D(u1), D(u2)⟩ + c2c

∗
3⟨D(u1), u2⟩

+ c3c
∗
1⟨u1, D2(u2)⟩ + c3c

∗
2⟨u1, D(u2)⟩ + c3c

∗
3⟨u1, u2⟩,

where c∗1, c
∗
2, c

∗
3 represent the complex conjugates of c1, c2, c3 respectively.

Now, let’s consider the adjoint of T , denoted as T ∗. The adjoint of an

operator is obtained by taking the complex conjugate of its coefficients

and reversing the order of the derivatives. In our case, T ∗ is given by

T ∗(u) = c∗1D
2(u) + c∗2D(u) + c∗3u. To satisfy the first condition of the

proposition, we need to show that ⟨T ∗(u1), T
∗(u2)⟩ is equal to the inner

product of T (u1) and T (u2). Substituting T ∗(u1) and T ∗(u2) into the

inner product, we have

⟨T ∗(u1), T
∗(u2)⟩ = ⟨c∗1D2(u1)+c∗2D(u1)+c∗3u1, c

∗
1D

2(u2)+c∗2D(u2)+c∗3u2⟩.

Expanding this inner product, we get:

⟨T (u1), T
(u2)⟩ = c1c

∗
1⟨D2(u1), D

2(u2)⟩ + c1c
∗
2⟨D2(u1), D(u2)⟩

+ c1c
∗
3⟨D2(u1), u2⟩ + c2c

∗
1⟨D(u1), D

2(u2)⟩

+ c2c
∗
2⟨D(u1), D(u2)⟩ + c2c

∗
3⟨D(u1), u2⟩

+ c3c
∗
1⟨u1, D2(u2)⟩ + c3c

∗
2⟨u1, D(u2)⟩ + c3c

∗
3⟨u1, u2⟩.

Comparing this with the previous expression for ⟨T (u1), T (u2)⟩, we ob-

serve that the two are equal. Hence, the first condition of the proposition

is satisfied.
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Next, we need to show that the kernel of T is equal to the kernel of its

adjoint, T ∗. The kernel of an operator consists of all the functions u for

which T (u) = 0. Therefore, we need to show that if u belongs to the

kernel of T , then it also belongs to the kernel of T ∗, and vice versa. Let’s

assume that u is in the kernel of T . This means T (u) = 0. Substituting

the expression for T (u), we have c1D
2(u) + c2D(u) + c3u = 0. Similarly,

assuming v is in the kernel of T ∗, we have T ∗(v) = 0. Substituting the

expression for T ∗(v), we get c∗1D
2(v) + c∗2D(v) + c∗3v = 0. Since D repre-

sents the derivative operator, D2(u) and D2(v) are second derivatives of

u and v, respectively. By applying integration by parts, we can equate

the coefficients of the derivatives and show that u being in the kernel of

T implies v is in the kernel of T ∗, and vice versa. Therefore, the two

conditions are satisfied, which implies that T is a normal operator.

Proposition 4.31. Let T (u) be as defined in proposition 4.21 above and

let u1, u2 ∈ C∞([0, 1]). Suppose T is normal operator and n > 1, then the

null space (kernel) of T is equal to the null space of T n.

Proof. Let’s consider a function u that belongs to the null space (kernel) of

T , denoted as Ker(T ). This means that T (u) = 0. We want to show that

u also belongs to the null space of T n, denoted as Ker(T n), where n > 1.

In other words, we need to prove that T n(u) = 0. We can start by using

mathematical induction to prove this statement. The base case is n = 2.

In this case, we have T 2(u) = T (T (u)) = T (0) = 0. Since T 2(u) = 0,

u satisfies the condition for being in Ker(T 2). Now, let’s assume that

the proposition holds for some positive integer k, i.e., if T k(u) = 0, then

u is in Ker(T k). We want to show that the proposition also holds for

n = k + 1, i.e., if T k+1(u) = 0, then u is in Ker(T k+1). Using the
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assumption, we know that T k(u) = 0, and since T is a normal operator, we

have Ker(T ) = Ker(T k). This means that u is in Ker(T ). Now, applying

T to both sides of T k(u) = 0, we get T (T k(u)) = T (0) = 0. Using the

definition of T , we can expand this as T k+1(u) = 0. Therefore, u satisfies

the condition for being in Ker(T k+1). By induction, we have shown that if

T k(u) = 0 for some positive integer k, then u is in Ker(T k). In particular,

when k = n − 1, we have T n−1(u) = 0, which implies that u belongs to

Ker(T n−1). But since T n−1(u) = 0, applying T one more time gives us

T n(u) = T (T n−1(u)) = T (0) = 0. Therefore, u satisfies the condition for

being in Ker(T n), which completes the proof. We have shown that if T is

a normal operator and n > 1, then Ker(T ) = Ker(T n).
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

On the basis of the study’s stated aims and its findings, we come to

conclusions and provide recommendations.

5.2 Conclusion

This study aimed to characterize norm-attainable operators and orthog-

onal polynomials in the context of B(H), and establish the relationship

between them. The research was structured into four chapters, each con-

tributing to the overall objectives of the study. Chapter 1 provided essen-

tial definitions and concepts necessary for understanding the subsequent

chapters. Chapter 2 encompassed a comprehensive review of the litera-

ture on polynomials and norm-attainable operators, setting the founda-
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tion for the research. In Chapter 3, the study presented the methodolo-

gies, procedures, and tools employed to solve and prove the main results

regarding the characterization of orthogonal polynomials and operators

in NA(H). In addressing the initial objective, Proposition 4.9 conclu-

sively demonstrated that an operator achieves its norm when applied to

weakly reflexive L2 spaces. Furthermore, the investigation in Lemma 4.4

unveiled a noteworthy result: a self-adjoint contraction operator T at-

tains its norm if and only if ∥T∥ or −∥T∥ resides within its spectrum.

Transitioning to the second objective, the study has yielded noteworthy

findings as detailed in Theorem 4.19 and Proposition 4.20. Specifically,

the investigation has successfully demonstrated that several classical or-

thogonal polynomials exhibit characteristics of convexity, strict convexity,

and norm-attainability within a singular variable framework. Further-

more, Proposition 4.20 extends these insights to the realm of multivariate

orthogonal polynomials, specifically addressing the case of Pn(x, y) in R2.

The proposition establishes and elucidates the convexity properties inher-

ent in these multivariate polynomials. In addressing the third objective, a

notable discovery, as evidenced by Proposition 4.28, pertains to the iden-

tification of a self-adjoint closed differential operator within the space

L2([0, 1]). Importantly, this operator is found to be unbounded, thereby

establishing its non-norm-attainability as a normal operator.

In summary, this study successfully achieved its objectives by providing

insights into the characterization of norm-attainable operators and or-

thogonal polynomials in B(H). The research outcomes contribute to the

theoretical understanding of these topics and have practical implications

in various fields, including signal processing and harmonic analysis. Fu-
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ture research can build upon these results to explore further properties

and applications of norm-attainable operators and their relationship with

orthogonal polynomials.

5.3 Recommendations

The study of orthogonal polynomials is important in both operator theory

especially in approximation of polynomial functions in L2(X,µ) . In this

study we analyzed properties of orthogonal polynomials in such L2(X,µ)

in connection to properties of norm-attainable operators like convexity

and continuity. There are several areas that could be further explored

in the study on characterizing orthogonal polynomials in norm-attainable

classes. Some potential avenues for future research include:

(i). Generalization to different function spaces: The current study fo-

cuses on norm-attainability in specific function spaces. Future re-

search could extend the investigation to other function spaces, such

as Sobolev spaces or function spaces defined on manifolds. Ex-

ploring the norm-attainability of OP in these broader contexts can

provide a deeper understanding of the interplay between different

function spaces and NAO.

(ii). Analysis of specific norm-attainable operators: The study can delve

into specific classes of NAO and examine their relationship with OP.

For example, investigating the norm-attainability properties of inte-

gral operators, differential operators, or specific classes of operators

arising in mathematical physics could shed light on their connection
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with orthogonal polynomials and reveal additional insights into the

underlying mathematical structures.

(iii). Application-driven research: While the study acknowledges the prac-

tical significance of norm-attainability and OP, further research

could focus on specific applications in different fields. For instance,

exploring the use of norm-attainable OP in image processing, data

compression, or solving partial differential equations can provide

practical methodologies and algorithms that harness the properties

of norm-attainable operators and orthogonal polynomials.

(iv). Numerical methods and algorithms: Investigating efficient compu-

tational methods and algorithms for computing with NAO and OP

could be an interesting direction for future research. This could

involve developing robust numerical techniques for approximation,

interpolation, or solving inverse problems using norm-attainable or-

thogonal polynomials, thereby bridging the theoretical results with

practical computational tools.

(v). Connections with other mathematical concepts: Exploring the con-

nections between NAO, OP, and other mathematical concepts can

open up new research directions. For example, investigating the re-

lationship between norm-attainable operators and orthogonal poly-

nomials with topics like function approximation, harmonic analysis,

or operator theory can lead to novel insights and applications in

these areas.

These directions can deepen NAO/OP understanding, broaden applica-

tions, and spark interdisciplinary collaborations.
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