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Abstract

Characterizing geometric properties in Banach spaces in terms of their

mappings has been done for a long period of time however it remains a

very difficult task to complete due to the complex underlying structures in

the Banach spaces. Recently, of interest has been the norm-attainability

and orthogonality aspects in Banach space setting in general. To char-

acterize these properties, one requires a geometrical view of the problem

and this brings into the picture the concept of Birkhoff-James orthogo-

nality in order to solve the problem. The main objective of this study is

to establish norm-attainability conditions of operators via Birkhoff-James

orthogonality in Banach spaces. The specific objectives include to: Es-

tablish Birkhoff-James orthogonality conditions for operators in Banach

spaces; Determine norm-attainability of operators in Banach spaces via

Birkhoff-James orthogonality and; Investigate the relationship between

the set of norm-attainable vectors and the set of norm-attainable oper-

ators via Birkhoff-James orthogonality in Banach spaces. The research

methodology involved the use of known orthogonality criterion in normed

spaces, technical approaches such as polar decomposition and tensor prod-

ucts and some known inequalities such as triangle inequality and Cauchy-

Schwarz inequality. The results show that operators are norm-attainable

in Banach spaces via Birkhoff-James orthogonality. Moreover, there is

a strong relationship between the set of norm-attainable operators and

the set of norm-attainable vectors. The results of this study are useful in

understanding the concept of orthogonal projections and has applications

in optimization theory and convex analysis.
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Chapter 1

INTRODUCTION

1.1 Mathematical Background

Studies on structural and geometrical properties in mathematical spaces

have been studied over the past decades as shown in [53] and the references

therein. Some of these properties include norms, numerical ranges, spec-

tra, orthogonality, positivity, invertibility, normality, norm-attainability

among others [126]. Recently, a lot of interest has emerged in the study of

Banach space particularly the geometrical properties [25]. Characterizing

geometrical properties in Banach spaces in terms of their mappings is very

difficult due to the complex underlying structures in the Banach spaces

(see [106] and [107]). Recently, of interest has been the norm-attainability

aspect in Banach space setting in general.

Let B be a Banach space and S be a unit sphere in B. One of the open

questions that has not been answered which was posed by Sain in [117]

states as follows: Suppose that T ∈ B is bounded and linear. Find a

necessary and sufficient condition for x ∈ S to be such that x belongs

to the set of norm-attainable vectors. To determine such conditions one

1



requires a geometrical view of the problem and this brings into the picture

the concept of orthogonality [27]. In this regard therefore, Birkoff-James

orthogonality (BJO) comes into play in order to solve this problem.

In this study we consider two aspects namely BJO and norm-attainability

in Banach spaces. These two properties remain interesting since there

are a lot of open questions which have not been answered. We scru-

tinize each of the properties independently then later, we establish the

points of convergence. We consider a property in Banach spaces called

the norm-attainability. This property has been considered by many au-

thors for instance Okelo [91], characterized norm-attainable operators on

Hilbert spaces. Moreover, the study considered elementary operators on

Banach algebras. In this study, conditions under which operators become

norm-attainable are unveiled. More on norm-attainable operators can be

found in [20], [39], [41], [42], [44], [87], [88], [89], [90], [128] and the ref-

erences therein. In [13], the authors constructed examples of operators

in Hilbert spaces where the operators fail to be BJO in the Hilbert space

setting. Sain and Paul [117], in the same spirit, characterized operator

norm-attainability via BJO. In [8], the authors set out to determine to

what extent the BJO can be applied to answer questions about the norm.

They studied in more details the properties of the norm that BJO can dis-

cern. In their study, they found out that BJO determines when a space

is Euclidean. Also, they found out that the BJO, in isolation, knows

when the space is finite dimensional and it can be applied to compute

the dimensions of the underlying finite dimensional spaces. They equally

asserted that BJO can be used to determine when the norm is smooth

and when it is strictly convex. Additionally, they discerned that through

2



BJO, smooth norms of reflexive Banach spaces up to their linear isome-

tries can be established. They used the concept of directed graphs and

ortho-graphs induced by BJO relations on normed spaces to offer proofs

to these assertions about the BJO and its knowledge on the norm. In

[118], the authors characterized the operators that achieve norms. They

studied this property via the weakly convergence sequences that exist in

the intersection of closed unit ball and they asserted that any compact

operator achieves an absolute norm in the closed unit sphere. They in-

vestigated the finite rank operators to check if they also attain norms. In

their investigation, they found out that the finite sum of all finite rank

operators also achieve norms. In this investigation, one of the conditions

that such operators achieve norms is that they first have to be positive.

More on finite rank operators can be found in [54], [55], [60], [61] and [63].

Stampfli [125], gave an outstanding result regarding orthogonality of norms

of inner derivations, δA(X) and corresponding orthogonality of norms of

generalized derivations. Anderson [3] characterized inner derivations with

orthogonality and gave a fundamental inequality, ∥AX − XA + T∥ ≥

∥T∥, ∀X ∈ B(H) which implies that the range of the inner derivation is

BJO to its kernel. In this case, orthogonality is defined in the sense of

Birkhoff [18] where we take A,B ∈ H to be orthogonal if ∥A+λB∥ ≥ ∥A∥.

We note that this sense of orthogonality of the range and kernel of deriva-

tions has been achieved via normal operators by quite a number of re-

searchers. More on the orthogonality of the range and kernel can be

found in [64], [66], [67], [73], [74], [75] and [76] and their respective ref-

erences. Mecheri [77] used the Birkhoff-James sense of orthogonality to

generalize Anderson’s inequality to normal operators A,B and T such
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that AT = TB and obtained the orthogonality result of the derivation, a

study that was later improved on by the authors in studies carried out in

[70], [71], [78], [79] and [80].

We now concentrate on the BJO in the general case and explore some

studies that have been carried out over the years by different scholars.

We note however, that BJO is still interesting since its complete charac-

terization has not been done. To consider particular researches, Pal and

Roy [101] studied dilating mappings and BJO and showed that operators

on Banach spaces can be characterized in terms of dilations via BJO.

The authors further constructed unitary dilations from pairs of commut-

ing contractions and demonstrated that these unitary dilations preserve

BJO.

Birkhoff [17], in the study of metric spaces, considered orthogonality and

obtained that orthogonality is preserved in real linear metric spaces. The

study showed that the maps on the real linear metric spaces are pre-

servers of orthogonality. However, at the time of the study, the work did

not consider general Banach spaces. It is worth noting that after the work

of [17], James [57], also came up with characterization of orthogonality

by considering inner products so that the work was of a higher level of

Hilbert spaces, and gave examples in normed spaces(NS). Moreover, in

[56], the author considered the dual space of Banach spaces and character-

ized functionals in terms of orthogonality particularly in normed spaces.

Andruchow et al [4], studied BJO of self-adjoint operators in members

of the subspace diagonal operators via the operator norm. Also, in [59],

the authors characterized BJO of complex Hermitian matrices in the trace

norm and some given positive semidefinite operators where they also went
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ahead to find applications to BJO in other fields such as information sys-

tems. In [30], Chmieliński et al extended the study of BJO and studied

the notion of ϵ- approximate BJO where they showed the homogeneity of

approximate BJO at some point of ϵ where the approximate orthogonality

coincides with the BJO. Moreover, in [7], the authors characterized BJO

for elements of Hilbert C∗-modules.

In [50], the authors, in a more recent case, further explored the symmetry

of BJO of matrices restricted to real Hilbert spaces and explored spaces

different from inner product spaces where BJO is symmetric. They as-

serted that given a Hilbert space, then an operator in the Hilbert space is

a left symmetric point provided it is a zero operator. Additionally, Sain

[115], extended this study of the symmetry of BJO and explored the left

symmetry of BJO of operators defined on Banach spaces. Bhatia and

Semrl in [16], did a generalization of the definition of BJO in terms of

matrices in any complex space. They studied BJO in finite dimensional

Hilbert spaces and asserted that, given two operators in the Hilbert space,

then the two operators are BJO to each other provided there exists an el-

ement x in the set of all norm-attainable operators such that Tx ⊥BJ Ax,

where T,A ∈ H. They also advanced the study of BJO via the operator

sequences where they asserted that two operators say, A and B are BJO

if there exists a sequence such that the limit of the norm of the sequence

converges to the operator norm of A and that Ax and Bx are orthogonal

in the inner product space. This result opened up many studies on or-

thogonality of bounded operators in Hilbert spaces. They also introduced

the concept of the study of BJO via the Schatten p-norms of operators

where they proved that whenever p = 2, then the given BJO is equivalent
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to the usual orthogonality in Hilbert spaces. Additionally, Bhatia and

Semrl [16], asserted that given two operators say, A and B in Banach

spaces, then there exists necessary and sufficient conditions for the two

operators to be BJO to each other, in the set of all complex numbers.

They investigated these conditions under some special cases one of which

was the condition that the operator B is the identity operator. They

applied this result in computations of some distance problems in Banach

spaces. In [129], the authors studied BJO of compact linear operators in

comparison between normed spaces and Hilbert spaces and developed a

characterization of BJO in finite dimensional Hilbert spaces.

Lummer [69], introduced the concept of Semi-inner-product(s.i.p) in the

study of BJO so as to employ the characterization of BJO in the setting of

Hilbert spaces extended to normed spaces and as a result, presented every

normed linear space as a s.i.p space. In [119], the author characterized

BJO on reflexive Banach spaces on connected subsets of the unit sphere

and proved BJO on account of existence of a norm-attainable vector in

Banach spaces. In [58], the authors elaborated the geometrical properties

like smoothness and rotundity in characterizing BJO in Hilbert spaces

and extended the study of these notions into some work on geometric

properties of the operator spaces. In a more recent study, Paul et al

in [97], established sufficient conditions in bounded linear operators for

smoothness in the same space via BJO and developed important results

that later formed reference points for the study of BJO. Li and Schneider

in [67], characterized BJO with reference to the extreme points of the

dual unit ball of a convex set and the convex hull of linear operators in

Hilbert spaces whenever the orthogonal operators are finite dimensional,
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and applied this study in finding best approximation of elements in dif-

ferent spaces. They showed that two elements are BJO if and only if

the zero operator is the best approximation to one of the elements in

the span of the other. The authors, in the same work, proved that the

Bhatia-Semrl theorem cannot be extended into the study of BJO in arbi-

trary finite-dimensional Banach spaces. Closely related to the study by Li

and Schneider, Singer [124], used the relationship between best approxi-

mation and BJO to advance the study of BJO in linear functionals and

the convex hull of extreme points in unit balls of linear functionals.

In [110], the authors characterized orthogonality for any two spaces and

the extreme points of the dual ball of some Hilbert space. They did this

through the tensor product of the extreme points of reflexive operators in

Hilbert spaces. Miguel et al [81], provided a general result characterizing

BJO in Banach spaces with regards to the actions of elements in norming

sets. They applied the approach of the numerical range which allowed

them to characterize smooth points in multilinear maps and polynomials.

They also went ahead to obtain results of BJO through the numerical ra-

dius of operators in Hilbert spaces. More on numerical range and radius

can be found in [106], [107], [108] and [122] and the references therein.

The authors also provided results in line with the Bhatia-Semrl Prop-

erty by omitting the convex hull and the use of limits in establishing

BJO in Banach spaces. Their main result was pegged on vector-valued

continuous functions on compact Hausdorff spaces. The authors further

characterized BJO in Banach spaces of all Lipschitz maps, spaces where

tensor products are endowed with norms, which they called injective ten-

sor products, operator normed spaces and finally, the spectral properties
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of operators such as the numerical radii. They finally studied possible

extensions of the BSP on BJO showing results in compact linear opera-

tors on reflexive spaces and finite Blaschke products. Their results found

very good applications in the study of spear vectors and spear operators

where they showed that in a Banach space, there is no smooth point that

can be found to be orthogonal to a spear vector. In [98], the authors in-

troduced the notion of the directional orthogonality where they asserted

that, given two vectors say p and q, then p ⊥BJ q if and only p is direc-

tionally orthogonal to q, that is p ⊥γ q, where ⊥γ denotes directional

orthogonality.

In [58], the author studied elaborately on the notions of smoothness of

operators through BJO and used this study in giving insights in the study

of geometrical properties of spaces of operators. The author characterized

inner product spaces and used BJO relation to assert that the set of all

real numbers of dimension at least three is an inner product space pro-

vided that for any three elements, the property of left additivity in BJO

is achieved. The author also went ahead to prove that, under the same

conditions, even the property of right additivity is obtained in general.

Paul, Sain and Arpita in [98], offered a complete generalization of op-

erators that are bounded and linear in Hilbert spaces. They located an

element say y in the norm-attaining set such that given two operators say,

Q and R, then it results that Qy is BJO to Ry.

Benitez et al in [14], proved that a space X qualifies to be called an IPS

with a provision that for any two matrices, say P and Q, in a normed

space X, if P is BJ-orthogonal to Q and that there exists an element say

v picked from a unit sphere such that ∥Pv∥ = ∥v∥.

8



In [132], the authors gave a slightly different notion of BJO using angu-

lar projections between two vectors say p and q in normed spaces, and

they called this angle, the g-angle. They achieved this characterization

through the use of the limits in Gateaux derivative. They developed se-

quences in their proof and exploited the continuity and the convergence

of the sequences so as to achieve their characterization.

In [7], the authors used the theorem due to Gelfand-Mazur to prove the

isomorphism between the space of C∗-algebra and the space of all com-

plex numbers, and as a result, led them into the characterization of BJO

in the dual of Hilbert spaces.

In the year 2013, Sain and Paul in [117], developed a linkage between

Bhatia-Semrl criterion and norm-attaining operators on connected closed

subsets of the unit sphere. They asserted that linear operators say K

and M , satisfy the condition of BJO if there exists an element in a closed

subset of the unit sphere. A converse of the result obtained in [117], was

established in [118], where they showed that if a bounded linear opera-

tor satisfies BSP, then the set of unit vectors where the linear operator

attains its norm is a connected projective space. The slight difference

in the results depended on the nature of the set of all norm-attainable

operators.

In [100], the authors proved the notion of convexity of normed linear

spaces where linear operators attain norms, and used the concept of strong

BJO where they proved that this concept of orthogonality implies BJO

and the converse is not true in general. They gave an illustration with ele-

ments picked from R2 space to show that BJO does not imply strong BJO.

In [72], the authors studied BJO through the concept called norm-parallelism

9



where they asserted that two elements are linearly dependent if and only

if they are norm-parallel. Through norm-parallelism, the authors intro-

duced a new geometrical property called semi-rotund points of a Hilbert

space. They used this new property to study the linkages between strong

BJO and BJO itself.

In [130], the authors developed the study of parallelism and its approx-

imations and used this concept to establish BJO of linear and bounded

operators in normed spaces. They did this through the establishment of

a sequence xn from the set of all unit vectors and developed limits of

convergence to achieve orthogonality in normed spaces.

In [23], the authors introduced a new generalization of BJO of bounded

linear operators that gives a clear linkage between BJO and other notions

of orthogonality in Banach spaces in terms of boundedness of linear op-

erators and their adjoints, and even the null space of such operators.

In [121], Sain and Tanaka characterized BJO through a re-definition of

smooth points to help advance the establishment of the left and right

symmetry via BJO and asserted that if an element is both left and right

symmetric, then it is called a symmetric point.

In [62], the author gave a different methodology of the proof of BSP by

first making a computation of the φ-Gateaux derivative of the individual

norms. The author employed this computation of Gateaux derivative to

characterize BJO in the attempt to offer a different line of proof to Bhatia-

Semrl theorem and he generalized this theorem to Hilbert C∗-modules of

the underlying C∗-algebras.

Light and Cheney in [68], explored the theory of approximation as far as

approximality in various tensor products is concerned. They established

10



a very interesting link between the theory of approximality and BJO.

They achieved the linkage through the application of the concept of cross

norms where they asserted that given to sets of elements a1, a2 and b1, b2

in Banach spaces, then their respective tensor products are BJO.

Mohit and Ranjana in [82], when they explored BJO in certain tensor

products of Banach spaces, managed to successfully study the relation-

ship that exists between BJO of elementary tensors in various tensor

products and the roles they play in BJO of elements in Banach spaces.

In [65], the authors therein, studied elements in C∗-algebras where BJO

is locally symmetric for all elements in a positive cone.

Bose, in [22], developed a study on lp-direct sums and located the du-

als of such spaces. The author also characterized the support function-

als of elements in normed spaces and studied smoothness and approxi-

mate smoothness. These results enabled the author to obtain non-smooth

spaces where non-zero elements are approximately smooth. These results

further enabled them to characterize BJO and the point-wise symmetry

in the spaces so developed.

James, in [57] characterized BJO for support functionals. The author

introduced the concept of right-additivity in BJO and claimed that a

non-zero point of a Banach space is smooth given the provision that the

point satisfies the right-additivity in BJO. The author also went ahead to

prove that given the existence of any elements say, a and b in a Banach

space, then the elements satisfy BJO if a= 0 or when f(y) = 0, provided

there exists some support functional say, h of a. James, in [58], again

proved that in any normed linear space whose dimension is 3 or more,

then BJO is symmetric for all IPS. This establishment enabled the au-
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thor to characterize BJO in usual sense in the inner product space.

In [105], the authors solved the operator version of BJO where they de-

veloped a compact optimization of Y -valued compact operators for the

minimax formula in a distance function and proved BJO for continuous

vector valued functions in any separable reflexive Banach spaces.

In [99], the authors used the existence property of BJO and the mini-

mal norm operator to characterize orthogonality in Banach spaces. They

showed that, for any bounded linear operators say M and N , there ex-

ists a complex scalar α0 such that orthogonality is achieved between the

operators M and N . They proved the existence of the scalar α0 via the

existence of a norm one sequence and they showed that the scalar α0 is

unique if the approximate point spectrum of the operator M does not

contain zero. They finally proved that if M is orthogonal to N , then the

operator norm of N must exhibit the following norm property, that is ,

∥N∥ = sup{|⟨Nu, v⟩| : ∥u∥ = 1, ∥v∥ = 1, ⟨Mu, v⟩ = 1}.

In [57], the authors studied different properties of orthogonality that in-

cluded both right and left uniqueness of orthogonality in Banach spaces.

They used some of these properties to characterize properties such as

Gateaux differentiability among other techniques. They asserted that

there exists a right-uniqueness in BJO given the existence of an element

x different from zero and another element y if there exists more than one

constant say λ such that x ⊥ λx + y, and for the left-uniqueness, the

assertion is left defined as is the right-uniqueness. They went a notch

higher and proved that a necessary and sufficient condition for normed

linear spaces to be strictly convex is that the orthogonality in the said

space must be left-unique.
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In [85], the author considered orthogonality preserving properties un-

der sesquilinear maps and studied some characterization of self-adjoint

sesquilinear forms. They asserted that sesquilinear forms qualify to be

inner products if an operator satisfying the sesquilinear form is a positive

invertible operator.

In [51], the authors investigated BJO of operators on the class (Rn, ∥.∥).

They proved that orthogonality of two operators is achieved if one of the

operators is derived from the class (Rn, ∥.∥) if and only if the operator

from the class (Rn, ∥.∥) is norm-attainable. They also proved that for the

operators P and Q, then P ⊥BJ Q implies that Q ⊥BJ P for the operator

P derived from the class (Rn, ∥.∥) provided that the operator Q is also

norm-attainable.

The works of [17] and [57] considered together brought about the famous

BJO concept and since its introduction a lot of advances have been car-

ried out in this direction.

Next, we consider the aspect of the relationship between the set of norm-

attainable vectors and the set of norm-attainable operators. It is a well

known fact that BJO can be used to ascertain norm-attainability [113].

However, a clear relationship between the set of all norm-attainable vec-

tors and the set of all norm-attainable operators is not known [57]. There

is very little in the literature regarding this relationship. Therefore, in

this study we embark on the task of determining this relationship. There

has been a strong relationship between BJO and norm-attainability. In

fact the latter can be characterized via the former [109]. It is in this per-

spective that it is interesting to study these two aspects simultaneously

in order to answer the question that was posed in the beginning of this
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section. To carry out this work successfully, we need some basic concepts

that are useful in understanding this work.

1.2 Basic Concepts

In this section, we discuss concepts which are of importance to this study.

Definition 1.1. ([88], Definition 2.1). An operator T in on Banach space

B is said to be norm-attainable if there exists a unit vector x ∈ B such

that ∥Tx∥ = ∥T∥.

Remark 1.2. We note that x ∈ B in Definition 1.1 is called a norm-

attainable vector [94] and the set of all norm-attainable vectors is denoted

by NAv. Moreover, the set of all norm-attainable operators is denoted by

NAop.

Definition 1.3. ([113], Definition 2.5). Let H be a Hilbert space. Two

elements x, y ∈ H are said to be orthogonal denoted by x ⊥ y, if ⟨x, y⟩ =

0. We say that subsets A and B of H are orthogonal written as A ⊥ B,

if x ⊥ y for every x ∈ A and y ∈ B.

Definition 1.4. ([86], Definition 3.4) Let B be a Banach space . Let x

be a unit vector in B and y ∈ B. Then x ⊥BJ y if and only if ∥x+ λy∥ ≥

∥x∥,∀λ ∈ K.

Definition 1.5. ([34], Definition 2.9) Let B be a Banach space. For any

ϵ ∈ [0, 1), x is said to be Birkhoff-James ϵ- orthogonal to y denoted by

x ⊥ϵ
BJ y if ∥x+ λy∥ ≥

√
1− ϵ2∥x∥, for all λ ∈ C.
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Remark 1.6. (i). In an Inner Product Space (IPS) (B, ⟨., .⟩), x ⊥ϵ y if

|⟨x, y⟩| ≤ ϵ∥x∥∥y∥.

(ii). For all n ∈ N, we can extend this definition as follows; x ⊥ϵ
BJ y if

∥x+ λy∥ ≥
√
1− ϵn∥x∥, ∀λ ∈ C.

Definition 1.7. ([100], Definition 1.8) For any linear space X , x ∈ X is

said to be strongly orthogonal to y in the sense of Birkhoff-James if and

only if ∥x∥ < ∥x+ λy∥, for all λ ̸= 0.

Remark 1.8. [100] The notation x ⊥S
B y is used to indicate the strongly

BJO.

Definition 1.9. ([113], Definition 3.6) In real Banach space X, the sets

x+ and x− are defined as follows;

(i) x+ = {y ∈ X : ∥x+ λy∥ ≥ ∥x∥, ∀λ ≥ 0}, and

(ii) x− = {y ∈ X : ∥x+ λy∥ ≥ ∥x∥, ∀λ ≤ 0}

Definition 1.10. ([130], Definition 2.1) A vector x is approximately par-

allel to another vector y if the inf{∥x + λy∥ : λ ∈ K} ≤ ϵ∥x∥, for all

ϵ ∈ [0, 1].

Definition 1.11. ([114], Definition 4.4) For any complex number z and

two matrices A1 and A2, A1 ⊥BJ A2 if and only if ∥A1 + zA2∥ ≥ ∥A1∥

where ∥A1∥ is the normal operator norm. Consequently, ∥A1 + zA2∥p ≥

∥A1∥p where ∥A1∥p is the Schatten-p norm of A given by

∥A1∥p = |
n∑

i=1

Si(Ai)
p|

1
p
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for 1 ≤ p <∞ and S1(A1) ≥ S2(A1) ≥ · · ·Sn(A1) are the singular values

of A1.

Definition 1.12. ([16], Definition 2.3) A point x ∈ B is said to be a

smooth point if there exists a unique linear functional ψ ∈ B∗ such that

∥ψ∥ = 1 and ψ(x) = ∥x∥.

Definition 1.13. ([16], Definition 2.9) Let T ∈ B be norm-attainable.

Then T satisfies BSP if for any A ∈ B, T ⊥BJ A, an implication that

there exists x ∈ ν : Tx ⊥BJ A.

Definition 1.14. ([43], Definition 3.7) Let B be a Banach space and

x, y ∈ B with y ̸= 0 for any ϵ ∈ [0, 1), the Birkhoff-James ϵ- orthogonality

set of x with respect to y is denoted and defined by Oϵ:x,y
BJOS = {α ∈ C :

y ⊥ϵ
BJ (x− αy)}.

Definition 1.15. ([43], Definition 1.9) Let B be a Banach space of oper-

ators. let A1, A2 ∈ B where A1 ̸= 0. For any usual operator norm ∥.∥ and

ϵ ∈ [0, 1) the BJ ϵ-orthogonality set of A1 with respect to A2 is denoted

and defined by Oϵ:A1,A2

BJOS = {α ∈ C : A2 ⊥ϵ
BJ (A1 − αA2)}.

Definition 1.16. ([119], Definition 3.5) Given a unit sphere Sx = {x ∈

X : ∥x∥ = 1}, then a sequence {xn} ∈ Sx is said to be a norming sequence

for a bounded linear operator T if ∥Txn∥ −→ ∥T∥.

1.3 Statement of the Problem

Let B be a Banach space and S be a unit sphere in B. Characterizing

geometrical properties in Banach spaces in terms of their mappings is
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very difficult due to the complex underlying structures in the Banach

spaces. Some of these properties are norms, numerical ranges, spectra,

orthogonality among others. Recently, of interest has been the norm-

attainability aspect in Banach space setting in general. One of the open

questions that has not been answered which was posed by [114] states as

follows: Suppose that T ∈ B is bounded and linear. Find a necessary

and sufficient condition for x ∈ S to be such that x belongs to the set

of norm-attainable vectors. To determine such conditions one requires

a geometrical view of the problem and this brings into the picture the

concept of orthogonality. In this regard therefore, BJO comes into play

in order to solve this problem. Further, it is a well known fact that

BJO can be used to ascertain norm-attainability [118]. However, a clear

relationship between the set of all norm-attainable vectors and the set of

all norm-attainable operators is not known [57]. There is very little in the

literature regarding this relationship. Therefore, in this study we embark

on the task of determining this relationship.

1.4 Objectives of the Study

To solve the stated problem we aim to achieve the following objectives.

1.5 Main Objective

The main objective of this study is to establish norm-attainability condi-

tions via Birkhoff-James Orthogonality in Banach spaces
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1.6 Specific Objectives

The specific objectives of the study are to:

(i). Establish Birkhoff-James orthogonality conditions for operators on

Banach spaces.

(ii). Determine norm-attainability of operators on Banach spaces via

Birkhoff-James orthogonality.

(iii). Investigate the relationship between the set of norm-attainable vec-

tors and the set of norm-attainable operators via Birkhoff-James

orthogonality on Banach spaces.

1.7 Significance of the Study

The results of this study are useful in understanding the concept of or-

thogonal projections which are important in constructing spectral decom-

positions of operators which play a crucial role in characterizing properties

of operators in general Banach space setting. Moreover, the results are

also useful in optimization theory and convex analysis.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Related literature to this study with fundamental results are reviewed in

this chapter. We consider various studies and give a critique of the same.

We also indicate the relevance of the reviewed work to our study.

2.2 Norm-Attainability

We review some literature related to norm-attainability in normed spaces.

We begin with self-adjoint normal operators.

Proposition 2.1. [88] A normal operator on a Hilbert space H is norm-

attainable if and only if it is self-adjoint.

Proposition 2.1 characterizes Hilbert space operators in terms of self ad-

jointedness. In our work we consider other operators like unitary, isom-

etry and projections to determine the norm-attainable vectors for these
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operators. Turnsek[126], characterized the existence of normal operators

in irreducible algebra. Our study considered norm-attainable operators

and determine whether they attain their norms in a general Banach space

setting. The author further characterized the existence of a rank one op-

erator on a closed maximal triangular algebra but we characterize normal

operators in other Banach spaces such as lp spaces. Finally, the study

characterizes the existence of normal operators on a closed maximal tri-

angular algebra using decomposability of finite rank operators. In our

study we considered other techniques such as known inequalities.

Okelo [87], showed that there exists normal operators in a Banach algebra.

The author used the method of tensor products in the characterization

but in our study we employed the same technique and other methods

such as polar decomposition. The work was extended to characterize

norm-attainable operators in a Banach algebra but the result was limited

to other Banach spaces such as lp-spaces. Finally, the work characterized

operators that are norm-attainable in Lie ideas but our study considered

lp-spaces and determines whether there exist normal operators in those

spaces.

Okelo et al [93], showed the relation between compactness and bounded-

ness of an operator when they are norm-attainable in Hilbert spaces. In

our study, we considered the notion of compactness and boundedness for

norm-attainable operators in Banach spaces in general. Okelo et al [92],

illustrated that certain operators attain their norms on Banach spaces and

went ahead to give necessary conditions for the existence of such norms

on a Banach space Q especially those operators with rank two from a

Banach space Q to a Banach space of dimension two. For instance, one
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of the conditions was the existence of a cone that is not trivially compris-

ing of continuous functionals that attain their norms on Q. The authors

further discussed denseness of rank-two operators that attain their norms,

which is true, for example, whenever there exists a dense linear subspace

comprising of functionals that attain their norms on Q. Specifically, the

authors considered operators on Hilbert spaces where these properties

were completely characterized and obtained. Our work however, sought

to utilize the compactness property of operators to establish whether such

operators attain their norms in Banach spaces. From the work of [91], it

is shown that compact operators are norm-attainable but in our study we

determined if operators can be approximated by those that attain their

norms.

Lemma 2.2. [90] Let X and Y be Banach spaces and consider J as a

compact operator. If [kerJ ]⊥ ⊂ NA(X), then J has norm attainment

property.

Lemma 2.2 characterizes norm attainability of compact operators but in

our study, we characterized Banach space operators in a general setting.

Finally, we showed that every operator which is compact can be approx-

imated by operators that attain their norms. Sain et al [120], proved

norm-attainability via BJO attached to a unit sphere. The authors fur-

ther showed that if an operator satisfies Bhatia-Semrl criterion, then the

operator is norm-attainable. Contrastingly, in our work, we used the

Bhatia-Semrl property as a tool in determining the operators that at-

tain norms at given points in a Banach space. We also delved into other

classes and subclasses of operators to establish the specific conditions

under which they attain their norms. In [112], the authors studied norm-
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attainability via approximate ϵ-BJO. Through the ϵ-BJO, they proved for

reflexivity and norm-attainability in spaces whose dimension is at least

three. Our work, however, characterized norm-attainability of operators

via BJO in a wider generalization as opposed to restricting the determi-

nation to approximate ϵ-BJO . We also determined norm-attainability via

BJO of other different classes of operators in Banach space as opposed to

bounded linear operators only.

In [118], the authors showed that the set of all unit vectors in a unit sphere

at which an operator attains norm is a countable set where the space in

which the set exists is smooth. In this case, they claimed that, the oper-

ator does not satisfy the Bhatia-Semrl property on orthogonality. They

partitioned the the set of the unit vectors where operators attain norms

into two non-void sets contained in the inverse of the Banach space which

disqualified the satisfaction of the Bhatia-Semrl property in any normed

space, different from any smooth spaces. In the same work, the authors

conjectured that a linear operator in a normed space satisfies the BS

property provided that the set of unit vectors where an operator attains

norm is connected in a well defined projective space. In our work, we

established norm attainability conditions for operators in Banach spaces

provided that the Banach space under operation is a smooth reflexive

Banach space. In most cases, we also dealt with the closure of the SRB-

classes in determining norm-attainability of operators in such spaces.

In [104], the authors characterized the norm-attainability of operators in

inner product spaces. They investigated the norm-attainability of opera-

tors under such conditions that included fixing positive constant integers

in the dimension at least three. They utilized the concept of fixed theorem
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of compact convex subsets of a subspace in a Hilbert space to establish

the norm-attainability in inner product spaces. The authors also used

the idea of strong convergence of sequences of positive integers to a fixed

point of an operator to establish norm-attainability conditions of opera-

tors in inner product spaces. Our work established the norm-attainability

of operators on account of SB-spaces . We also used the concept of or-

thonormal sequences of unit vectors to characterize norm-attainability of

operators via the BJO.

In [116], the authors characterized the norm attainment set of all bounded

linear operators on Hilbert spaces. They did this through the study of

extreme contractions on Euclidean and convex spaces. In this study,

they gave an alternative proof to the concept of contractions of operators

in both real and complex cases. The study of extreme contractions in

two dimensional subspaces enabled the authors to offer a proof of norm-

attanability conditions via BJO in Banach spaces. In their work, they

proved that, for a finite dimensional Hilbert space, given a bounded lin-

ear operator in the space, then there exists an orthonormal basis of the

Hilbert space such that the operator which attains its norm in a unit

sphere preserves orthogonality on the orthonormal basis. The authors

further proved the necessary condition for an operator to be a contrac-

tion in a Banach space, and for this case, they asserted that the operator

is an extreme contraction provided that the operator is norm-attainable

at linearly independent unit vectors. In our work, we characterized the

norm-attainability conditions of operators on SRB-spaces. We character-

ized these conditions via approximate BJO where the operators involved

were approximately semi-orthogonal in the SRB-spaces.
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2.3 Birkhoff-James Orthogonality

Regarding orthogonality, we considered this aspect in general then we

narrowed down to BJO. From the work of [13], various notions of or-

thogonality are given. Many researchers have henceforth studied these

different notions of orthogonality in different spaces.

Choi and Kim [33], studied norm-attainment of multilinear mappings in

Hilbert spaces. They showed that denseness of operators does not hold

when the domain space is not null for arbitrary range.

Theorem 2.3. [33] Every multilinear map attains its norm if it is the

identity.

Theorem 2.3 characterizes norm-attainment in terms of the identity. In

our work, considered other nontrivial operators like the unitary and isome-

tries. Since multilinear operators are sometimes products of other opera-

tors, we found it interesting to study product operator of other operators.

At this juncture, let’s put our effort to reviewing BJO. We begin with the

following proposition.

Proposition 2.4. [128] Every operator on a Hilbert space which satisfies

BJO condition is approximately BJ-orthogonal. However, the converse is

not true.

Proposition 2.4 gives the relationship between BJO condition and approx-

imate BJO. It confirms that every operator which satisfies BJO condition

is approximately BJ-orthogonal. It further shows that the converse is not

true. Approximate orthogonality is weaker but an important notion of

orthogonality that gives a picture of the geometry of Banach spaces. We
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also considered approximate BJO but in a general Banach space setting.

Miguel et al [81], provided characterization of BJO in a number of fami-

lies of Banach spaces in terms of the elements of significant subsets of the

unit ball. They used the approach of the numerical range to advance this

study. They also studied BJO of the duals of operators in Banach spaces.

They used the techniques of the tensors, norm-attainability and the max-

imum values of the numerical range to advance their study. However, our

work sought to establish BJO conditions on other nontrivial operators on

Banach spaces. We also employed the proof due to Bhatia to advance our

establishments. Our work also concentrated on the classes of bounded

linear operators due to the rich geometrical structures they posses so as

to help us achieve the desired results.

In [15], Bhatacharya and Priyanka explained the BJO in C∗-modules in

IPS. They proved the infinite dimensional case in operators that achieve

BJO in terms of sequences that converge to the operator norms. They

also proved the real Bhatia-Semrl theorem where they asserted that if

A,B ∈ M(n), then picking t ∈ R, we have that ∥A + tB∥ ≥ ∥A∥. They

proved that this is only possible if the operator norm and the real part

of the inner product are both zero. They showed that this assertion is

always true but the reverse fails the affirmative test. However, in our

work we considered both the set of real numbers and the set of complex

numbers to prove for BJ-orthogonality in Banach spaces.

Morrel proved in [84], orthogonality via tensor products of vectors in

Banach spaces. They made an attempt to answer the question that if

x1 ⊥BJ x2 and y1 ⊥BJ y2, then is (x1 ⊗ y1) ⊥BJ (x2 ⊗ y2)? However, in

our work, we employed the techniques of the tensor products to establish
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BJO conditions on Banach spaces. We used tensor products as a tool but

not in perturbation of different classes. We also restricted our work to

the class of Banach spaces as opposed to the other classes advanced in

the work of Morrel.

Bajracharya and Ojha [11], established BJO via the approach of sub-

differential of continuous linear functions. They used this approach to

advance on the Bhatia-Semrl property and the composition of the subd-

ifferential of the norms of functions f(t) = ∥A + tB∥ to establish BJO.

They used composition of functions to advance their characterization of

BJO via subdifferential of functions. Finally, they discussed the inclusion

of semidefinite operators in the field of values of functions. In our work,

we established BJO conditions using approaches such as numerical ranges

of operators, tensor products of Banach spaces, strong orthogonality and

approximate orthogonality among other techniques. We established these

orthogonality conditions on operators that attain norms at given points

in Banach spaces.

Priyanka and Sushil [102], studied the cases of orthogonality in such spe-

cial cases when it is symmetric and when it is both right and left additive

as well as establishing BJO in extreme points of operators among oth-

ers. They extended the study of BJO and its connections to hyperplanes

and support hyperplanes where they made a claim that every hyperplane

is orthogonal to its subspace. To prove this assertion, they employed

the technique of the Hahn-Banach theorem to offer a proof of the claim.

They connected the claim to symmetry of BJO and confirmed that in-

deed, BJO is right additive provided the existence of a norm which is

Gateaux differentiable at each non-zero point. This work goes ahead to
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show right-additivity in other spaces. However, in our work, we estab-

lished BJO from the premise that BJO is homogenous, nonsymmetric

and non-additive, both left and right, in normed spaces. We utilized the

techniques used in their proofs to help us develop our results in Banach

spaces.

Saidi [111], also considered the study of symmetry in Banach spaces.

The author gave examples of operators that achieve symmetry in Banach

spaces and proved left-symmetry in such spaces. Our work established

BJO in general sense in some subclasses of Banach algebras. We also con-

centrated in homogeneity property of BJO in normed spaces. Chmielnski

and Wójćik in [31], studied approximate BJO and the approximate sym-

metry of BJO. Their result was based on the non-symmetry of BJO in

normed spaces. They showed that orthogonality due to Birkhoff-James

is symmetric up to some point in the dual space of operators. This dis-

cussion enabled them to extend the approximate symmetry of BJO into

other spaces. However, our study concentrated on BJO with an exten-

sion into non-symmetric approximate BJO as a pre-condition to achieve

our establishment of the orthogonality conditions in Banach spaces. We

also, upon relaxation of some conditions on approximate BJO, general-

ized BJO whenever the conditions on symmetry are met.

Johnstone et al [59], characterized orthogonality of self-adjoint operators

and their translates into other operators. They went ahead to explain

numerous consequences of BJO in Hermitian matrices and the applica-

tions of such to quantum information theories, where matrices are positive

semidefinite of trace one. They extended this study to the determination

of the types of operators which are BJO to diagonal matrices. The fore-
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going assertions restrict the orthogonality results to when the operators

involved are self-adjoint and semidefinite. In our work, we established

BJO in Banach spaces for a range of other classes of operators and deter-

mine under what conditions such operators are BJO. We also established

the BJO results in the operator norms in the Banach spaces.

Arambasic and Rajna [6], discussed BJO in Hilbert C∗-modules. They in-

troduced the notion of orthogonality which they called strong BJ-orthogonality.

Our work however, characterized BJO in general Banach space setting.

We also delved into the notion of strong orthogonality but in a general

Banach space setting. Paul and Sain in [97], obtained a complete charac-

terization of approximate BJO of operators which was an advancement on

the study of approximate BJO of compact linear operators. In our study,

we also investigated classes of operators like unitary, normal, Hermitian

and their compositions in establishing BJO. We restricted our study to

well defined spaces.

Shoja et al, in [123], studied orthogonality via the semi-inner-product.

They achieved their results through the concept of the norming sequence

and strict convexity of operators. The foregoing result pegged BJO to

strict convexity of compact operators. Our study however, considered

other classes of operators such as normal operators, unitary operators

and operator projections to establish BJO in Banach spaces.

Bose et al in [21], established BJO by finding the symmetries for lp-spaces

onto themselves. They then found all the isometries of these spaces. They

established the BJO results by use of filters and ultrafilters as tools to

achieve the BJO results. These assertions by Bose [22] and others char-

acterized BJO in terms of the symmetries, most specifically, the left sym-
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metry. However, in Banach spaces, we based our study on the premise

that BJO is not symmetric, both right and left. However, this study by

Bose and others in [21] is a motivation to our study and as a result, we

also delved into the study of spaces where BJO is also right symmetric,

and even both left and right symmetric.

In [21], the authors characterized BJO in Schäffer unitary dilations of the

operators T and the commutant of the operator ST . We found it inter-

esting, in our work, to investigate the outcome on BJO if the operators

S and T are not commuting. We also found it interesting to investigate

the outcome of BJO on other classes of operators and most specifically,

the behavior of BJO on unitary operators.

In [94], the authors established BJO whenever the operators are unitary

dilations or isometries, that is, UT and UA respectively and showed that

UT is BJ-orthogonal to UA. In our work, we considered the basic opera-

tors such as unitary operators, normal operators, perturbation in operator

theory among other operators in establishing BJO in Banach spaces. In

[95], the authors established BJO whenever an operator undergoes self

perturbation for an integer for any positive integer. For our work, this

form of perturbation created an interest and led us to check if BJO still

holds whenever the self perturbation is taken for any negative integers or

even when the integer is strictly above zero.

In [109], the authors characterized BJO via ρ-dilations. They established

this result from the premise of norming sequences of both the opera-

tors A and T provided the operators are dilations. Our work however,

concentrated on different classes of the operators A and T and their per-

turbations with other classes of operators to establish BJO in Banach
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spaces. We also investigated operator sequences for BJO as opposed to

norming sequences as a tool to establish our results.

In [22], the authors characterized BJO and its positive symmetry on the

closure of the convex hull of norm sequences. However, our work sought

to establish BJO on numerical ranges of operators and their sequences,

which has a close connection with the convex hull of operator sequences.

Also, still in [22], the authors established BJO with both left and right

symmetry as a property in terms of sequences and most specifically, the

zero sequence. On the other hand, we established BJO from the premise

of non-symmetry of BJO. However, we also investigated the special classes

of operators and operator sequences when symmetry holds as a condition

of BJO. We also made a contribution in such classes by relaxing the con-

ditions of sequences to establish BJO in Banach spaces.

In [23], the authors characterized BJO of bounded linear operators be-

tween Hilbert spaces and Banach spaces through the cartesian decomposi-

tion of operators. The authors further showed that it is possible to extend

the Bhatia-Semrl theorem into the case of orthogonality in bounded lin-

ear operators between infinite dimensional spaces. They also focussed

on orthogonality of bounded linear operators alongside the orthogonal-

ity in positive operators in both real and complex Banach spaces. The

authors finally studied some related properties in orthogonality between

different notions of orthogonality and explored different applications for

such relationship between the different notions of orthogonality. Our work

however, established BJO conditions as an isolated notion of orthogonal-

ity and concentrated on SRB-spaces as our target space of operation. We

also established the orthogonality conditions in the classes of operators
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such as the approximate semi-orthogonal operators.

Turnsek, in [127], studied operators preserving James’ orthogonality and

characterized isometries and co-isometries in bounded linear operators in

terms of orthogonality. Due to this study, the author obtained conjugate

linear mappings and surjective maps that preserve James orthogonality

in any directions. They proved the orthogonality results via the numer-

ical range approach where they restricted their approach to the interior

points of self-adjoint unitary operators where such operators attain their

norms on unit vectors. They also established the orthogonality conditions

through the orthogonal projections of subspaces of operators and asserted

that the orthogonality due to James is only preserved provided the nu-

merical range of the operators involved are ellipsoids with zero as their

interior points. However, our study established the orthogonality results

on the basis of orthogonality due to Birkhoff-James as a notion. We also

restricted our study to polar decompositions of operators and the index

conjugations of elements in the closure of SRB-spaces.

The authors in [9], investigated BJO conditions on operators in Hilbert

C∗-modules where they obtained the necessary conditions on given ele-

ments in modules such that the elements achieve the orthogonality prop-

erty of symmetry. They established these orthogonality conditions through

the minimality of the inner product spaces and projections of one-dimensional

Hilbert spaces. The authors also described the conditions under which

orthogonality, and most specifically, BJO is left or right additive through

the invertibility of nonzero elements of subspaces. The authors also stud-

ied strong BJO and proved its symmetric relation in Hilbert modules of

subspaces through the isomorphism of the C∗-algebras to the space of all
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complex numbers. On the other hand, our work utilized the involution

property of the C∗-algebras to establish the BJO conditions for operators

in Banach spaces. We also established this orthogonality via the subclass

of approximately semi orthogonal operators in SRB-classes.

Dehghani and Zamani in [40], introduced a new concept of orthogonal-

ity called the approximate ρ∗-orthogonality. This notion of orthogonal-

ity, they claimed, preserves mapping between normed spaces. They also

proved that approximate ρ∗-orthogonality is homogenous. The authors

also showed that for a norm which is Gâteaux differentiable, the ap-

proximate ρ∗-orthogonality coincides to the approximate BJO in normed

spaces. They finally showed that every approximate ρ∗-orthogonality

mapping is a multiplicity by a scalar of almost isometry. These prop-

erties that preserve approximate BJO were later verified by the authors

of the work in [83]. In our work, we characterized approximate orthogo-

nality in Hilbert spaces and in infinite Banach spaces. We also established

the orthogonality conditions in the spaces of Hilbert C∗-modules. We fi-

nally established these conditions in projections different from the normal

orthogonal projections in Banach spaces.

In [103], the authors, when they studied orthogonality to matrix sub-

spaces, obtained a necessity for an operator to be BJO to any subspace

of a complex Hilbert space under an inner product. They achieved this

orthogonality result basing their argument on the existence of a density

operator of complex rank. The authors constructed the proof of their find-

ing through the concept of subdifferential of composition maps. Through

this study, the authors proved an expression for a distance formula be-

tween an operator from any unital C∗-subalgebras of all complex Hilbert
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spaces. In our work, we established the orthogonality conditions on finite

dimensional Hilbert spaces and on positive semidefinite operators. We

also used the concept of tensor norms to achieve our establishment of

BJO conditions on Banach spaces.

Eskandari et al in [46], characterized conditions in triangle inequality that

lead to some equivalence relations in terms of states of C∗-algebras. They

extended this study into establishing equivalent statements to the paral-

lelogram identity for some vectors in the Hilbert C∗-modules. The authors

also established when the equality conditions hold in triangle inequality

for the cases of all operators that are adjointable on a Hilbert C∗-modules

and as a result, gave conditions that are necessary and sufficient for any

two vectors in a pre-Hilbert C∗-module that the inner product of the

two vectors has a negative real part, in the case Pythagorean identity.

Towards the tail end of the study, the authors introduced the notion of

Pythagoras orthogonality as well as characterizing its orthogonality prop-

erties. Finally, the authors went a notch higher to present some examples

that illustrate the existence of a relationship between BJO, Pythagoras

orthogonality as well as the connection to the usual orthogonality in the

class of Hilbert C∗-modules. In our work, we used the Triangle inequal-

ity as a methodology in advancing our establishment of orthogonality

conditions in Banach spaces. We also established the BJO conditions in

C∗-algebras and proved the orthogonality conditions for any two opera-

tors provided that their tracial norms are strongly BJO.

Ali Zamani in [131] generalized the concept of BJO of operators in Hilbert

spaces through the concept of the semi-inner product. The author intro-

duced a new relation in orthogonality called the T -Birkhoff-James orthog-
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onality, for T being an operator in a complex Hilbert space and that the

operator T is bounded linear operator in the Hilbert space. In fact, for this

particular case, any two operators are BJO in Hilbert spaces if the oper-

ators are bounded with respect to the semi norm induced by any positive

operator. The authors additionally extended the Bhatia-Semrl property

and showed that any two operators are T -Birkhoff-James orthogonal pro-

vided the existence of a sequence of T -unit vectors such that the sequence

converges. Finally, the author introduced the notion of T -Birkhoff-James

orthogonality of operators in semi-Hilbertian spaces where they showed

that even for this case of orthogonality, the property of homogeneity still

holds. The author then extended the concept of T -Birkhoff-James orthog-

onality into developing some formulae for T -distance of operators to the

class of some constants of other cases of semi-Hilbertian spaces. In our

work, we established BJO conditions for operators in complex planes. We

also proved the homogeneity property of the BJO and used this particular

property in establishing BJO conditions for other subclasses of operators

on Banach spaces.

In [10], the authors considered three aspects of orthogonality in Hilbert

C∗-modules in relation to some C∗-algebras. They considered the BJO,

the strong BJO and finally the orthogonality in relation to an A-valued

inner product spaces. They characterized orthogonality in some classes of

Hilbert C∗-modules where there were possibilities of any of the two con-

cepts of orthogonality coinciding. Moreover, the authors characterized

the subclasses in normed spaces equipped with various orthogonalities

where a given type of orthogonality is an implication of the other. More

specifically, the authors established orthogonality conditions in classes of
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Hilbert C∗-modules where BJO implies strong BJO and in the cases where

strong BJO is an implication of orthogonality with respect to the IPS. In

our work however, we established the BJO conditions in restriction to the

SRB-classes. We also established the conditions of BJO independently of

the strong BJO in Banach spaces.

In [32], in the study of operators reversing orthogonality in normed spaces,

the author dealt with linear operators on normed spaces and considered

those properties under which orthogonality is reversed. The author con-

sidered all those operators in normed spaces where BJO preserving prop-

erty is upheld. The author, In particular, asserted that operators which

are nonzero and linear at the same time, preserve orthogonality and are

also injective. In this study, the author appreciated the non-symmetry

of orthogonality but asserted that it would be interesting if they consid-

ered the problem of reversing BJO. For all operators that obey linear

similarity, the author established that the reversing and preserving BJO

properties have an equivalence relation. However, the author also es-

tablished that there exists spaces that fail to admit nontrivial mappings

which reverse BJO. Such spaces where the property of reversing BJO fail

to hold were established in this work of which the author called them the

two-dimensional normed spaces, more specifically, the Minkowski planes.

In our work, however, we established the orthogonality conditions in the

SRB-spaces. We also dealt with conditions that preserve orthogonality

as opposed to such conditions that reverse BJO.
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2.4 Relationship between the set of Norm-

Attainable Vectors and the Set of Norm-

Attainable Operators

It is a well known fact that BJO can be used to ascertain norm-attainability

[114]. However, a clear relationship between NAv and NAop is not

known [57]. There is very little in the literature regarding this relation-

ship. Therefore, in this study we embarked on the task of determining

this relationship.
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Chapter 3

RESEARCH

METHODOLOGY

3.1 Introduction

To solve problems on properties of bounded linear operators on Banach

spaces like spectrum, compactness, norms, numerical ranges and orthog-

onality, certain methods and techniques are useful. The methodology in-

volved the use of known inequalities such as Cauchy-Schwarz inequality,

Triangle inequality and Minkowski’s inequality. We also used technical

approaches of Tensor products and Direct sum decomposition. Finally, we

used some fundamental principles of some known results that have been

advanced beforehand to establish our results. We discuss such methods,

tools and techniques in this chapter.
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3.2 Known Inequalities

In this section, we discuss the known inequalities.

3.2.1 Cauchy-Schwarz inequality

It is also referred to sometimes as Cauchy-Bunyakovsky-Schwarz inequal-

ity. It can be loosely defined as an upper bound in a space X, called the

inner product space [5], between u, v ∈ X in terms of the products of the

norms of the vectors u, v ∈ X. The statement of the inequality is;

|⟨u, v⟩|2 ≤ ⟨u, u⟩.⟨v, v⟩ (3.2.1)

for all u, v in the inner product space X, and ⟨., .⟩ is the inner product.

One of the spaces that the inner product gives rise to is the Euclidean

l2 norm which is sometimes referred to as the induced norm [2]. Be-

cause of this, we can equally state the Cauchy-Schwarz inequality(CSI)

as ∥u∥ =
√
⟨u, u⟩ where ⟨u, u⟩ > 0 [12]. In a more familiar way, taking the

positive square root of Equation 3.2.1, we generate another more familiar

statement of the CSI as;

|⟨u, v⟩| ≤ ∥u∥∥v∥. (3.2.2)

It is important to note that equality holds in 3.2.2 if and only if the vectors

u and v are linearly dependent [19]. We have utilized CSI in chapter four

of our work to prove the result in Theorem 4.10 of our first objective

which relies on states in a C∗- algebra. It has come handy to help us to
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prove that if C is a C∗- algebra, then A ⊥s
BJ B in C if there exists a state

ξ in C such that ξ(AA∗) = ∥A∥ and ξ(BB∗) = 0 for A,B ∈ C.

3.2.2 Triangle inequality

Let x and y be two vectors in the inner product space X. Then, ∥x+y∥ ≤

∥x∥ + ∥y∥, for all x, y ∈ X [24]. Our work uses the Triangle inequality

alongside Minkowski’s inequality to prove a result of Theorem 4.6 of our

first objective which seeks to establish Birkhoff-James orthogonality con-

ditions for operators on Banach spaces via Schatten p- norms.

3.2.3 Minkowski’s inequality for sequences

Minkowski’s inequality was named after a German mathematician called

Hermann Mikowski. It is an inequality which establishes that the LP are

actually normed spaces. To the statement of the inequality, let 1 ≤ p <∞

and let a and b be members of LP (X) where X is a measure space. Then

a+ b ∈ LP (X) and we have the inequality;

∥a+ b∥ ≤ ∥a∥p + ∥b∥p, (3.2.3)

with equality if 1 < p < ∞ if and only if a and b are positively linearly

dependent [26]. It is also important to note that Minkowski’s inequality

is the triangle inequality in the class LP (X) [28]. We can generalize this

inequality to sequences and vectors as;

(
n∑

k=1

|ik + jk|p)
1
p ≤ (

n∑
k=1

|Xk|p)
1
p .
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We have employed the techniques of Minkowski’s inequality and the tri-

angle inequality with a good effect to prove a result of Theorem 4.6 of

our first objective which shows that if P,Q ∈ L(B1,B2) then, P ⊥BJ Q

if P has a polar decomposition P = U |A| and tr|P |p−1U∗Q = 0 in the

Schatten p-norm.

3.3 Technical Approaches

These include some of the techniques that we have used to advance the

proofs of our results. They include the following techniques;

3.3.1 Polar decomposition of operators

Polar decomposition of a linear transformation on a finite dimensional

Hilbert space H is a factorization of the linear transformation into a

product of hermitian operator and an orthogonal transformation [36].

Therefore, a polar decomposition of an operator Q acting on a Hilbert

space has a general representation of Q = UP where U is a partial isomet-

ric operator and P is a positive operator [35]. In our work, we have used

polar decomposition of operators to develop the proof of Theorem 4.6

which seeks to establish BJO conditions for operators on Banach spaces

in our first objective. This result establishes BJO condition in Schatten

p-norms.
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3.3.2 Direct sum decomposition

In this study, we have used direct sum decomposition to determine norm-

attainability of operators on Banach spaces via BJO as our second ob-

jective. In particular, we used direct sum decomposition to construct the

proof of Lemma 4.20 regarding the set of all norm-attainable operators

in finite dimensional Hilbert spaces.

3.3.3 Tensor product

Given W a linear bounded operator on a Hilbert space H1 and another

bounded linear operator R on another Hilbert space H2, then there exists

a unique linear bounded operator T on H1 ⊗H2 such that T (r1 ⊗ r2) =

Wr1 ⊗ Rr2 for all r1 ∈ H1 and r2 ∈ H2, called a tensor product of

operators W and R denoted by W ⊗ R [37]. We note that W ⊗ R is

finite dimensional and its dimension is the product of dimension of W

and R [38]. The tensor product is associative, that is, given vector spaces

P,R,W , there is an isomorphism (P ⊗ R) ⊗W ∼= P ⊗ (R ⊗W ), which

assigns (p⊗r)⊗w to p⊗(r⊗w) . It is also commutative in the sense that

given two vector spaces R and W , we have that R ⊗W ∼= w ⊗ r, for all

r ∈ R and for all w ∈ W [45]. We can also state that up to isomorphism,

the tensor product is unique. In our work, we have effectively utilized

the tensor product to establish BJO conditions for operators on Banach

spaces as our first objective. This evident in the statement and the proof

thereof of Theorem 4.16 of our first objective.
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3.4 Fundamental Principles

In this section, we discuss some of the known principles that we use in our

results and their proofs. These include some of the established theorems

developed beforehand.

3.4.1 Hahn-Banach Theorem

Hahn-Banach theorem is a very important tool that we use in our work

especially in dual spaces. For a normed space, complex or real, a linear

subspace of the normed space and an element of the dual of the subspace,

there exists elements in the dual space that extend it [29]. The theorem

preserves the norms in the extension of the subspaces. In our work, we

use the Hahn-Banach theorem to construct a proof on the investigation of

the relationship between the set of all norm-attainable vectors and the set

of all norm-attainable operators via BJO on Banach spaces as our third

objective. The use of this theorem is evident in the proof of Proposition

4.27 of our third objective.

3.4.2 Bhatia-Šemrl Criterion

Bhatia-Šemrl Criterion provides an establishment of BJO of operators in

Hilbert spaces. Two operators in a Hilbert space qualify to be BJO given

the existence of an element in the set of all norm-attainable operators such

that their inner product is zero [47]. The set of all operators obeying the

BSP has an equivalence in the set of all norm-attainable operators [1]. In

our work, we used this property to develop a proof of the establishment of
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BJO conditions for operators in Banach spaces as our first objective. We

have used this property in good effect to advance the proof of Proposition

4.12 on orthogonality by the tensor products.

3.4.3 Bolzano-Weierstrass Theorem

This is a theorem on boundedness of sequences. For this theorem, every

bounded sequence has an equivalent convergent subsequence in the real

space since every limit exists for all bounded sequences in the space [52].

Every convergent sequence is bounded and not conversely. This theorem

is beneficial when dealing with sequentially compact sets in the real space

[49]. Bolzano-Weierstrass theorem has been used in our second objective

where we set out to determine norm-attainability of operators on Banach

spaces via BJO. It came in handy to offer a proof to Lemma 4.20 on BJO

and norm-attainable operators.

3.4.4 Hausdorff-Toeplitz Theorem

This is a theorem on Numerical ranges, sometimes called the field of val-

ues, of operators. For this theorem, the numerical range of any operator

is convex [48]. In our work, we have used Hausdorff-Toeplitz Theorem to

determine norm-attainability of operators on Banach spaces via BJO as

our second objective. We have used the idea of this theorem to construct

the proof of Proposition 4.17 on reflexive smooth Banach spaces.
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3.4.5 Separation Hyperplane Theorem

Separation Hyperplane Theorem is a general proposition about disjoint

convex sets in a finite dimensional Euclidean space that traces its origin to

Hermann Minkowski. For this case, let A and B be two disjoint nonempty

convex subsets of the Euclidean space Rn. Then there exists a nonzero

vector v and a real number c such that ⟨x, v⟩ ≥ c and ⟨y, v⟩ ≤ c, for all

x ∈ A and for all y ∈ B whic is an implication that the space ⟨., v⟩ = c

where the normal vector v separates A and B. In our work, we used

the theorem to aid in the proof of Proposition 4.19 on Birkhoff-James

orthogonality and norm-attainability as our second objective.
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Chapter 4

RESULTS AND

DISCUSSION

4.1 Introduction

In this chapter, we characterize Birkhoff-James orthogonality in Banach

spaces. In particular, we establish BJO conditions for operators in Ba-

nach spaces.

We give results on orthogonality in infinite cases. We delve into ap-

proximate orthogonality, strong orthogonality and orthogonality in tensor

products of Banach spaces.

4.2 BJO Conditions for Operators on Ba-

nach Spaces

In this section, we establish BJO conditions for operators on Banach

spaces. In Hilbert spaces, we define approximate orthogonality by a ⊥ϵ b
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if and only if |⟨a, b⟩| ≤ ϵ∥a∥∥b∥,∀ϵ ∈ [0, 1). We characterize approximate

orthogonality in Hilbert spaces and in infinite Banach spaces. We begin

with a result on homogeneity of BJO.

Proposition 4.1. Let B be a smooth reflexive Banach space. Then for

A,B ∈ B, A ⊥ϵ
BJ B if ∀λ ∈ C,

∥A+ λB∥ ≥ ∥A∥2 − 2ϵ∥A∥∥λB∥, ∀ϵ ∈ [0, 1). (4.2.1)

Moreover, A ⊥ϵ
BJ B implies that µA ⊥ϵ

BJ ωB for any µ, ω ∈ C.

Proof. The case of µ = 0 is obvious and so we omit. Let µ ̸= 0, then we

have that

∥µA+ λωB∥2 = |µ|2∥A+ λ
ω

µ
B∥2

≥ |µ|2(∥A∥2 − 2ϵ∥A∥∥λω
µ
B∥)

= ∥µA∥2 − 2ϵ∥µA∥∥λωB∥.

So,

∥µA+ λωB∥2 ≥ ∥µA∥2 − 2ϵ∥µA∥∥λωB∥. (4.2.2)

Hence, ⊥ϵ
BJ is homogenous. If we put µ = 1 and ω = 1 in Inequality

4.2.2, we obtain the inequality 4.2.1

Next, we give the homogeneity in a more general context.

Proposition 4.2. Let B be a SRB-space . Then for A,B ∈ B, A ⊥ϵ
BJ B

if ∀λ ∈ C,

∥A+ λB∥ ≥
√
1− ϵ2∥A∥,∀ϵ ∈ [0, 1). (4.2.3)
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Moreover, A ⊥ϵ
BJ B implies that µA ⊥ϵ

BJ ωB for any µ, ω ∈ C.

Proof. The case of µ = 0 is obvious and therefore we leave it out. Let

µ ̸= 0, then we have that;

∥µA+ λωB∥2 = |µ|2∥A+ λ
ω

µ
B∥2

≥ |µ|2(∥A∥2 −
√
1− ϵ2∥A∥∥λω

µ
B∥)

= ∥µA∥2 −
√
1− ϵ2∥µA∥∥λωB∥.

So,

∥µA+ λωB∥2 ≥ ∥µA∥2 −
√
1− ϵ2∥µA∥∥λωB∥. (4.2.4)

Hence, ⊥ϵ
BJ is homogenous. If we put µ = 1 and ω = 1 in inequality

4.2.4, we obtain the inequality 4.2.3.

Proposition 4.3. Let B be a SRB-space. Then, for A,B ∈ B, A ⊥ϵ
BJ B

if ∀λ ∈ C,

∥A+ λB∥ ≥
√
1− ϵn∥A∥,∀ϵ ∈ [0, 1),∀n ∈ N. (4.2.5)

Moreover, A ⊥ϵ
BJ B implies that µA ⊥ϵ

BJ ωB for any µ, ω ∈ C.

Proof. The case of µ = 0 is obvious and therefore we leave it out. Let

µ ̸= 0, then we have that;

∥µA+ λωB∥2 = |µ|2∥A+ λ
ω

µ
B∥2

≥ |µ|2(∥A∥2 −
√
1− ϵn∥A∥∥λω

µ
B∥)

= ∥µA∥2 −
√
1− ϵn∥µA∥∥λωB∥.
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So,

∥µA+ λωB∥2 ≥ ∥µA∥2 −
√
1− ϵn∥µA∥∥λωB∥. (4.2.6)

Hence, ⊥ϵ
BJ is homogenous. If we put µ = 1 and ω = 1 in inequality

4.2.6, we obtain the inequality 4.2.5.

Lemma 4.4. Let B be a SRB-space and A,B ∈ B. Then A ⊥ϵ
BJ B on B

if A and B are approximately semi-orthogonal.

Proof. Let A and B be approximately semi-orthogonal, i.e, ⟨B,A⟩ =

ϵ∥A∥∥B∥. Let l ∈ [0, 1] for some θ ∈ {−π, π}. We have that ⟨B,A⟩ =

lϵ∥A∥∥B∥eiθ. Let λ ∈ C be given arbitrarily, then;

∥A+ λB∥∥A∥ ≥ |⟨A+ λB,A⟩|

= |∥A∥2 + λ⟨B,A⟩|

= |∥A∥2 + lϵ∥A∥∥B∥λeiθ|.

Therefore;

∥A+ λB∥ ≥ |∥A∥+ lϵ∥B∥λeiθ|

= |∥A∥+ lϵ∥B∥Re(λeiθ) + ilϵ∥B∥ limλeiθ|.

Squaring both sides with the right hand side having real and imaginary

parts and from [31], we have that ∥A + λB∥2 ≥ ∥A∥2 − 2ϵ∥A∥∥B∥, an

implication that A ⊥ϵ
BJ B.

Theorem 4.5. Let B1 and B2 be non-zero infinite dimension and SRB-
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spaces and A,B ∈ L(B1,B2). Then

∥A+ λB∥ ≥ ∥A∥2 − 2ϵ∥A∥∥λB∥,∀ϵ ∈ [0, 1) (4.2.7)

Proof. We prove this by contradiction. Let Inequality 4.2.7 fail to hold.

This implies that there exists λ ∈ R such that 0 < ∥A+ λB∥2 < ∥A∥2 −

2ϵ∥A∥∥λB∥. Suppose that λ < 0. Then for any λ, we have that ∥A +

λB∥2 > 0. By [112], we have that z ∈ L(B1,B2) such that ∥z∥ = 1 for

any z = A+λB
∥A+λB∥ . From [96], we have that ∥A+λB∥ = ∥A∥2−2ϵ∥A∥∥λB∥

which contradicts the Inequality 4.2.7. Hence, our earlier supposition does

not hold and as a result, Inequality 4.2.7 holds and thus A ⊥ϵ
BJ B.

The next result employs the technique of polar decomposition with Schat-

ten p-norms in Banach spaces of trace class.

Theorem 4.6. Let P,Q ∈ L(B1,B2). Then P ⊥BJ Q if P has a polar

decomposition P = U |A| and tr|P |p−1U∗Q = 0 in the Schatten p-norm.

Proof. Let tr|P |p−1UQ = 0. Then for all λ ∈ C, we have tr|P |p =

tr|P |p−1(|A|+ λU∗Q). From Minkowski’s inequality, we obtain,

tr|P |p ≤ |∥|P |p−1∥k∥|P |+ λU∗Q∥p|

= ∥|P |p−1∥q∥P + λQ∥p.

But (tr|P |p)1− 1
k = (tr|P |p)

1
p = ∥P∥p since k is the index conjugate of p,

that is 1
p
+ 1

q
= 1. So, ∥P∥p ≤ ∥P +λQ∥p, that is , ∥P +λQ∥ ≥ ∥P∥q

Remark 4.7. These results hold true for sequence matrices as seen from

the work of Bhatia and Semrl [16].
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At this point, we move to BJO in C∗-algebras. It is known in [66] that,

C∗-algebras are Hilbert C∗-modules. Hence, inner product is given as

⟨B,A⟩ = B∗A for all A,B ∈ C. Let C be a C∗-algebra. Then for

A,B ∈ C A is strongly BJ-orthogonal to B denoted by A ⊥s
BJ B if for

all C ∈ C, ∥A + BC∥ ≥ ∥A∥. If A and B are mutually strongly BJ-

orthogonal, that is, A ⊥s
BJ B and B ⊥s

BJ A , then it is denoted by

A ⊥ms
BJ B . We begin with the following proposition:

Proposition 4.8. Strong BJO is intrinsically orthogonal in a C∗-algebra

C.

Proof. Let C0 and C be two C∗-algebras such that C0 ⊂ C. Let A,B ∈

C0. Since C0 is a C∗-module and is itself a C∗-algebra, then from [63],

A ⊥s
BJ B if and only if A ⊥s

BJ B⟨B,A⟩ if and only if A ⊥s
BJ BB

∗A

Lemma 4.9. Let C be a C∗-algebra, then A ⊥s
BJ B if and only if |A∗| is

strongly BJO to |B∗|.

Proof. Since |A| =
√
A∗A, we have that |B∗||B∗| = (BB∗)

1
2 (BB∗)

1
2 =

BB∗. But we have from Proposition 4.8 that A ⊥s
BJ B if and only if

A ⊥s
BJ BB∗A. So, we obtain A ⊥s

BJ B if and only if A ⊥s
BJ |B∗|.

Consider a partial isometry A = |A∗|E for some E ∈ C0 ⊂ C and also

consider |A∗| = AE∗. Let |A∗| ⊥s
BJ B, then for C ∈ C0 ⊂ C we obtain

from [112] that;

∥A∥ = ∥|A∗|E∥ ≤ ∥|A∗|∥ ≤ ∥|A∗|+BCE∗∥

= ∥(A+BC)E∗∥

≤ ∥A+BC∥.
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Therefore, ∥A+BC∥ ≥ ∥A∥, for all C ∈ C0. So, A ⊥s
BJ B.

Conversely, if A ⊥s
BJ B, then for all C ∈ C, we have that;

∥A∥ = ∥AE∗∥ ≤ ∥A∥ ≤ ∥A+BCE∥

= ∥(|A∗|+BC)E∥

≤ ∥|A∗|+BC∥.

Hence A ⊥s
BJ |B∗|. Also A ⊥s

BJ B if |A∗| ⊥s
BJ B

Next, we prove a result with regards to states in C.

Theorem 4.10. Let C be a C∗-algebra. Then A ⊥s
BJ B in C if there is a

state ξ in C such that ξ(AA∗) = ∥A∥ and ξ(BB∗) = 0 for A,B ∈ C.

Proof. Since ξ is a state in C, then for any C ∈ C, we have by Cauchy-

Schwarz inequality that |ξ⟨C∗, C∗⟩|2 ≤ ξ(C∗C) = 0. Let ∥A∥ = 1. We

have;

∥A+BC∥2 = ∥(A+BC)(A+BC)∗∥ ≥ |ξ(AA∗+AC∗B∗+BCA∗+BCC∗B∗)|

(4.2.8)

From the involution property of C∗- algebras, we have that ξ(AC∗B∗) =

ξ(BCA∗) = 0, ξ(AA∗) = 1 and ξ(BCA∗) = ξ(BCC∗B∗) = 0.

Hence, from Inequality 4.2.8, we have that ∥A + BC∥2 ≥ 1 = ∥A∥2.

Taking positive square root on both sides, we have, ∥A + BC∥ ≥ ∥A∥

that is, A ⊥s
BJ B.

Corollary 4.11. Let A,B ∈ C. For any projection P ∈ C such that

PA = A and PB = 0, we have that B ⊥s
BJ A.
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Proof. With the conditions of the Corollary 4.11, we have C ∈ C such that

∥A + BC∥ ≥ ∥P (A + BC)∥ = ∥PA∥ = 1 = ∥A∥. That is, ∥A + BC∥ ≥

∥A∥. Hence, A ⊥s
BJ B in C.

Next, we give results of BJO in relation to tensor products of operators.

We begin with the following proposition;

Proposition 4.12. Let B1 and B2 be SRB-spaces with tensor norm. Then

A1⊗B1 ⊥BJ A2⊗B2 on B1⊗πB2 where A1, A2 ∈ B1, B1, B2 ∈ B2, A1 ⊥BJ

B2 in L(B1, B2) and ∥.∥π, ∥.∥INJ are cross norms and injective norm

respectively.

Proof. By Bhatia and Semrl property, A1 ⊥BJ A2 and so we have ψ ∈ B∗
1

with ∥ψ∥ = 1. This implies that |ψ(A1)| = ∥A1∥ since ψ is a functional

and ψ(A2) = 0. Next, consider χ ∈ B∗ with ∥χ∥ = 1. This similarly

implies that χ(B1) = ∥B1∥. Let z ∈ C be given, then we obtain that

∥(A1 ⊗B1) + z(A2 ⊗B2)∥π ≥ ∥(A1 ⊗B1) + z(A2 ⊗B2)∥INJ

= sup{|ψ′(A1)χ
′(B1)

+ zψ′(A2)χ
′(B2)| : ψ′ ∈ BB1

, χ′ ∈ BB2
}

≥ |ψ(A1)χ(B1) + zψ(A2)χ(B2)|

= ∥A1∥∥B1∥

= ∥A1 ⊗B1∥.

Therefore, ∥(A1 ⊗B1) + zψ(A1 ⊗B2)∥ ≥ ∥A1 ⊗B1∥. Hence A1 ⊗B1 ⊥BJ

A2 ⊗B2 on B1 ⊗π B2.
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Remark 4.13. It is known from [112] that in reflexive and smooth Ba-

nach spaces, B1 and B2, A ⊥ B if and only if there exists ϕ ∈ B∗
1 such

that |ϕ(A1)| = ∥ϕ∥∥A∥ with ϕ(B1) = 0, ∥A1 ⊗ B1∥π = ∥A1∥∥B1∥ as a

cross norm and

∥W∥INJ = sup

{
|

n∑
i=1

ϕ(A1)ψ(B1)|
}
,W =

∑
Ai ⊗Bi ∈ B1 ⊗B2.

BB∗
1
is the closed unit ball of B∗

1 .

Remark 4.14. The converse of Proposition 4.12 is not true in general,

that is, A2 ⊗B2 ̸⊥BJ A1 ⊗B1 on B2 ⊗B1 since BJO is antisymmetric.

At this point, we consider two special cases.

Lemma 4.15. Let Ω = CC[0, 1] be the set of all complex functions on

[0, 1]. Let T ∈ Ω be an identity function and 1 be a constant function.

Then T ⊗ 1 ⊥BJ 1⊗ T in Ω.

Proof. From Bhatia and Semrl property and Proposition 4.12, we have

that

∥T ⊗ 1 + z(1⊗ T )∥INJ = ∥T.1 + z(1.T )∥ sup
p,q∈[0,1]

|p+ zq| ≥ 1 = ∥T ⊗ 1∥.

Theorem 4.16. Let } be the space of all operators acting on the l2- space

and A,B,C ∈ }. Then A⊗I ⊥BJ B⊗C on }⊗} where I is the identity

operator in }.
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Proof. Let } ⊗ } ⊆ L(l2⊗l2) in which ⊗ is a tensor product in Hilbert

spaces. Also, consider z ∈ C then we have;

∥A⊗ I + z(B ⊗ C)∥ = sup
l∈(l2⊗l2),∥l∥=1

∥(A⊗ I)l + z(B ⊗ C)l∥

≥ ∥(A⊗ I)(i1 ⊗ i2) + z(B ⊗ C)(i1 ⊗ i2)∥

= 1 + |z|2 ≥ 1 = ∥A⊗ I∥.

So, ∥A ⊗ I + z(B ⊗ C)∥ ≥ ∥A ⊗ I∥. Hence, A ⊗ I ⊥BJ (B ⊗ C) in

}⊗}.

4.3 BJO and Norm-attainability

In this section, we characterize norm-attainability via BJO. We give con-

ditions under which operators attain their norms via BJO.

We begin with the following proposition;

Proposition 4.17. Let B be a SRB-space and A1, A2 in B be such that

A1 ⊥BJ A2. Let λ ∈ R, then A1, A2 ∈ NAop.

Proof. We first prove the necessity. Since B is smooth, then we have

λ ∈ R. We need to show that there exists a unit vector x ∈ B such that

∥A1x∥ = ∥A1∥ and Re⟨A1x,A2x⟩ = 0 if and only if ∥A1 + λA2∥ ≥ ∥A1∥.

Consider a smooth unit point x ∈ B such that ∥A1 + λA2∥2 ≥ ∥(A1 +

λA2)x∥2 = ∥A1∥2.

For the proof of sufficiency, suppose that A1 is a positive semidefinite ma-

trix operator and there exists a unit vector w ∈ B such that A1w = ∥A1∥w
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and Re⟨A1w,A2w⟩ = 0. From [16], A1 can be expressed as a singular

value decomposition as A1 = UAµ
1V , we have that ∥Aµ

1 + λU⋆A2V
⋆∥ ≥

∥Aµ
1∥∀λ ∈ R and Aµ

1 = ∥Aµ
1∥w,Re⟨Aµ

w, U
⋆A2V

⋆w⟩ = 0. So, for x = V ∗w

we obtain ∥A1x∥ = ∥A1∥ and Re⟨A1x,A2x⟩ = 0. But, A1 is positive

semidefinite.

From Gateaux derivative criterion, let a quadratic form be defined by

f : B −→ B by u 7→ ⟨V,A2V ⟩. Then from Hausdorff-Toeplitz theorem,

we have that the set c = {⟨V,A2V ⟩ : ∥V ∥ = 1, A1V = ∥A1∥V } which is

the image of {V : ∥V ∥ = 1, A1V = ∥A1∥V } under f. From the numerical

range property of convexity, C is convex.

So, C◦ = {Re⟨V,A2V ⟩ : ∥V ∥ = 1, A1V = ∥A1∥V } is convex.

From Conv(C◦) we find from [16], that there exists a unit vector w such

thatA1w = ∥A1∥w and Re⟨w,A2w⟩ = 0 which implies that Re⟨A1w,A2w⟩ =

0 and hence A1, A2 ∈ NAop.

Remark 4.18. The result in Proposition 4.17 considers λ when it is real.

In the next result, we consider λ when it is complex.

Proposition 4.19. Let B be a SRB and let A1, A2 ∈ B be such that

A1 ⊥BJ A2. Let λ ∈ C, then A1, A2 ∈ NAop.

Proof. Following the same argument as in Proposition 4.17, let A1 ⊥BJ A2

hold. This suffices if there exists a unit vector x ∈ B such that;

∥A1 + λA2∥ ≥ ∥A1∥, ∀λ ∈ C. (4.3.1)

Now let l, θ ∈ R be given, then Inequality 4.3.1 becomes;

∥A1 + leiθA2∥ ≥ ∥A1∥,∀l, θ ∈ R. (4.3.2)
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Since A2 is dependent on θ and fixing θ we obtain from Inequality 4.3.2,

that ∥A1 + lA2∥ ≥ ∥A1∥, ∀l ∈ R.

Suppose that A1 is positive semidefinite by Proposition 4.17, then

A1w0 = ∥A1∥w0 and Re eiθ⟨A1w0, A2w0⟩ = 0. (4.3.3)

Define the set C ′ = {⟨A∗
2A1w,w⟩ : ∥w∥ = 1, A1w = ∥A1∥w}. This is a

complex subset of C. In fact, it is a numerical range of A∗
2A. Let 0 /∈ C ′.

Now, since C ′ is the numerical range of complex numbers, then there

exists v ∈ C such that;

Rev⟨A∗
2A1w,w⟩ > 0, (4.3.4)

from Separation Hyperplane Theorem [85] and the fact that A1w =

∥A1∥w.

Let V = |V |eiθ0 and substituting in strict Inequality 4.3.4, we obtain

Re e−iθ0⟨A∗
2A1w,w⟩ > 0, ∀w ∈ B with ∥w∥ = 1, A1w = ∥A1∥w. This

contradicts Condition 4.3.3 since 0 ∈ C. That is A1w = ∥A1w∥ and

⟨A1w,A2w⟩ = 0. Hence, A1, A2 ∈ NAop.

In this next lemma, we consider Hilbert spaces in infinite dimensions.

Lemma 4.20. Let H be a finite dimensional Hilbert space and A1, A2 ∈

B(H). We have that A1, A2 ∈ NAop if and only if A1 ⊥BJ A2.

Proof. Suppose that A1 ⊥BJ A2 holds. Let J : H −→ H and J◦ be on

H
⊕

H given by

J◦ =

 0 J

0 0

 .
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Since J◦ acts on the direct sum of H, then ∥J◦∥ = ∥J∥. Taking similar

representations of A1 and A2 as A◦
1 and A◦

2 on H
⊕

H respectively, we

have that ∥A◦
1+λA

◦
2∥ ≥ ∥A◦

1∥,∀λ ∈ C. Let xn
⊕

yn be a sequence of unit

vectors in H
⊕

H, then

lim
n→∞

∥A◦
1(xn ⊕ yn)∥ = ∥A◦

1∥, (4.3.5)

and

lim
n→∞

⟨A◦
1(xn ⊕ yn), A

◦
2(xn ⊕ yn)⟩ = 0.

From Equation 4.3.5, we find that

lim
n→∞

∥A1xn∥ = ∥A1∥.

But

∥A1∥ = lim
n→∞

∥A1xn∥ ≤ ∥A1∥ lim inf
n→∞

∥xn∥

which implies that

lim inf
n→∞

∥xn∥ ≥ 1.

But ∥xn∥ ≤ 1,∀n ∈ N. So we have

lim sup
n→∞

∥xn∥ ≤ 1

and therefore

lim
n→∞

∥xn∥ = 1.

By Bolzano-Weierstrass Theorem, we have the sequence xn of unit vectors
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in H such that

lim
n→∞

∥A1xn∥ = ∥A1∥

and

lim
n→∞

⟨A1xn, A2xn⟩ = 0.

Hence, A1, A2 ∈ NAop.

Conversely, let A1, A2 ∈ NAop. This implies that there exists a sequence

of unit vectors in H such that ∀n ∈ N;

∥A1 + λA2∥2 ≥ ∥(A1 + λA2)xn∥2

= ∥A1xn∥2 + |λ|2∥A2xn∥2 + 2Reλ⟨A1xn, A2xn⟩

≥ ∥A1xn∥2 + 2Reλ⟨A1xn, A2xn⟩.

As n → ∞, we have that ∥A1 + λA2∥2 ≥ ∥A1∥2. Taking positive square

root on both sides, we have that ∥A1 + λA2∥ ≥ ∥A1∥.

Hence, A1 ⊥BJ A2.

Theorem 4.21. Let H1 and H2 be Hilbert spaces. Then A1, A2 ∈ NAop

if and only if A1 ⊥BJ A2.

Proof. Let A1, A2 ∈ B(H1,H2) and suppose that A1 ⊥BJ A2. From

Lemma 4.20, there exists a sequence of unit vectors xn such that

lim
n→∞

∥A1xn∥ = ∥A1∥

and

lim
n→∞

⟨A1xn, A2xn⟩ = 0.

But by Bolzano-Weierstrass Theorem, xn must have a convergent subse-
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quence converging to a unit vector x. Hence, A1, A2 ∈ NAop.

Conversely, let A1, A2 ∈ NAop. Then there exists xn ∈ H such that

∥A1 + λA2∥ ≥ ∥A1∥, ∀λ ∈ C. From the converse of Lemma 4.20, the

proof is complete.

Corollary 4.22. Let H be a complex Hilbert space and A1, A2 ∈ B(H).

Then A1, A2 ∈ NAop if and only if A1 ⊥BJ A2.

Proof. Let ∥A1∥ = 1. Then by Corollary 3.12 of [81], we have that A1 ⊥BJ

A2 if and only if 0 ∈ Ca = Conv({W ⋆(A2x) : w⋆(A1x) = ∥A1∥}).

Since Ca is non-void and convex, we have that A1 ⊥BJ A2 if and only if

0 ∈ Cb = Conv({⟨A2x, y⟩ : x, y ∈ SH, ⟨A1x, y⟩ = ∥A1∥ = 1}). Indeed,

{⟨A2x, y⟩ : x, y ∈ SH, ⟨A1x, y⟩ = 1} = {⟨A2x,A1x⟩ : x ∈ SH, ∥A1x∥ =

1}

Corollary 4.23. Let H be a complex Hilbert space and A1, A2 ∈ B(H).

Then there exists a sequence xn ∈ SH with limn→∞ ∥A1xn∥ = ∥A1∥ and

limn→∞⟨A1xn, A2xn⟩ = 0 if and only if A1 ⊥BJ A2.

Proof. This proof follows directly from Corollary 4.22 by taking n → ∞

for the sequence xn. Indeed, for all n ∈ N, A1 ⊥BJ A2 if and only if

0 ∈ Cd = Conv({ lim
n→∞

⟨A2xn, yn⟩ : xn, yn ∈ SH, lim
n→∞

⟨A1xn, yn⟩ = ∥A1∥}).

But Cd is non-void and convex and so for all n ∈ N, we have that

{lim⟨A2x, yn⟩ : xn, yn ∈ SH, limn→∞⟨A1xn, yn⟩ = ∥A1∥} = {lim⟨A2xn, A1xn⟩ :

xn ∈ SH, limn→∞ ∥A1xn∥ = ∥A1∥}.
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Next, we prove that A1, A2 ∈ NAop via BJ-ϵ-approximate orthogonal-

ity.

Proposition 4.24. Let B be a SB-space. Then A1 ⊥ϵ
BJ A2 if and only if

there exists a sequence of vectors in SB such that limn→∞ ∥A1xn∥ = ∥A1∥

and limn→∞ ∥A2xn∥ ≤ ϵ2∥A2∥.

Proof. Suppose that the sequence in SB is an orthonormal sequence.

Then for every A1, A2 ∈ B, there exists P in the Span{A1, A2} such that

A1 ⊥BJ P . This statement is true since A1 ⊥ϵ
BJ A2 from the statement

of the problem. Moreover, ∥P − A2∥ ≤ ϵ2∥A2∥. This implies that there

exists an orthonormal sequence of unit vectors xn such that

lim
n→∞

∥A1xn∥ = ∥A1∥

and

lim
n→∞

∥Pxn∥ = 0.

Therefore, we have that ∥Pxn − A2xn∥ ≤ ∥P − A2∥ < ϵ2∥A2∥ which

implies that

lim
n→∞

∥A1xn∥ = ∥A1∥

and

lim
n→∞

∥A2xn∥ ≤ ϵ2∥A2∥.

Conversely, let there be a sequence xn ∈ SB such that

lim
n→∞

∥A1xn∥ = ∥A1∥
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and

lim
n→∞

∥A2xn∥ ≤ ϵ2∥A2∥.

We prove that A1 ⊥ϵ
BJ A2. Now let λ ∈ R, then for A1, A2 ∈ B, we have

that

∥(A1 + λA2)xn∥2 ≥ |∥A1xn∥ − |λ|∥A2xn∥|2

≥ ∥A1xn∥2 − 2∥A1xn∥|λ|∥A2xn∥.

Taking limits as n→ ∞, we have ∥A1 + λA2∥2 ≥ ∥A1∥2 − 2ϵ2∥A1∥∥λA2∥

which implies that A1 ⊥ϵ
BJ A2.

Theorem 4.25. Let B be a SB-space then A1 ⊥ϵ
BJ A2 if there exists a

sequence vn ∈ SB and another sequence ϵn of real numbers such that for

all m ∈ N,

∥A1vn + λA2vn∥2 ≥ (1− ϵmn )∥A1vn∥2 − nϵ
√
1− ϵmn ∥A1vn∥∥λA2∥, ∀λ ≥ 0.

(4.3.6)

Proof. From the argument of the first part of the proof of Proposition

4.24, we have an orthonormal sequence νn ∈ SB such that for A1, A2 ∈ B,

there exists P1 in the Span{A1, A2} such that A1 ⊥BJ P1. This implies

that A1 ⊥BJ A2. Since we have νn being orthonormal, let there be a

sequence ϵn of real numbers such that ϵn → 0, limn→∞ ∥A1νn∥ = ∥A1∥

and P1νn ∈ A1νn|+ϵmn , ∀m ∈ N. This is an implication that ∀λ ≥ 0 we
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obtain;

∥A1νn + λA2νn∥2 = ∥(A1νn + λP1νn) + λ(A2νn − P1νn)∥2

≥ |∥A1νn + λP1νn∥ − |λ|∥A2νn − P1νn∥|2

≥ ∥A1νn + λP1νn∥2 − 2∥A1νn + λP1νn∥|λ|∥P1νn − A2νn∥

≥ (1− ϵmn )∥A1νn∥2 −mϵ
√

1− ϵmn ∥A1νn∥∥λA2∥.

∀m ∈ N. To prove sufficiency, let Inequality 4.3.6 hold. Without loss of

generality, picking the sequence νn, then we have that ∀λ ≥ 0,

∥A1 + λA2∥2 ≥ ∥(A1 + λA2)νn∥2

≥ (1− ϵmn )∥A1νn∥ −mϵ
√
1− ϵmn ∥A1νn∥∥λA2∥.

Taking limits as n→ ∞, we obtain ∥A1+λA2∥ ≥ ∥A1∥2−mϵ∥A1∥∥λA2∥.

Hence, A1 ⊥BJ A2.

Corollary 4.26. Let B be a SB-space then A1 ⊥ϵ
BJ A2 if there exists a

sequence wn ∈ SB and another sequence χm
n of real numbers such that for

all m ∈ N and for all λ ≤ 0,

∥A1wn + λA2wn∥2 ≥ (1− χm
n )∥A1wn∥2 − nϵ

√
1− χm

n ∥A1wn∥∥λA2∥.

Proof. Again, from the argument of the first part of the proof of Propo-

sition 4.24, we have an orthonormal sequence wn ∈ SB such that for

A1, A2 ∈ B, there exists P2 in the Span{A1, A2} such that A1 ⊥BJ P2.

This implies that A1 ⊥BJ A2. Since we have wn being orthonormal,

let there be a sequence χn of real numbers such that χn → 0, and

limn→∞ ∥A1wn∥ = ∥A1∥ and P2wn ∈ A1wn|−χm
n
,∀m ∈ N. This is an
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implication that ∀λ ≤ 0 we obtain;

∥A1wn + λA2wn∥2 = ∥(A1wn + λP2wn) + λ(A2wn − P2wn)∥2

≤ |∥A1wn + λP2wn∥ − |λ|∥A2wn − P2wn∥|2

≤ ∥A1wn + λP2wn∥2 − 2∥A1wn + λP2wn∥|λ|∥P2wn − A2wn∥

≤ (1− χm
n )∥A1wn∥2 −mϵ

√
1− χm

n ∥A1wn∥∥λA2∥, ∀m ∈ N

To prove sufficiency, let Inequality 4.3.6 hold. Without loss of generality,

pick the sequence wn, then we have that ∀λ ≤ 0,

∥A1 + λA2∥2 ≤ ∥(A1 + λA2)wn∥2

≤ (1− χm
n )∥A1wn∥ −mϵ

√
1− χm

n ∥A1wn∥∥λA2∥.

Taking limits as n→ ∞ we obtain ∥A1+λA2∥ ≥ ∥A1∥2−mϵ∥A1∥∥λA2∥.

Hence A1 ⊥BJ A2.

4.4 Relationship between NAv and NAop

In this section, we characterize two sets namely, the set of norm-attainable

operators and the set of norm-attainable vectors independently. Then

we establish the relationship between these two sets via BJO. We de-

note the set of all norm-attainable vectors by NAv and the set of all

norm-attainable operators by NAop. The Birkhoff-James orthogonality

set (BJOS) is denoted by O(ϵ:x,y)
BJOS and O(ϵ:A,B)

BJOS .

We begin with the following proposition;

Proposition 4.27. Let B be a Banach space of all members of NAv and
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O(ϵ:x,y)
BJOS of elements of B then O(ϵ:x,y)

BJOS is non-void.

Proof. Since O(ϵ:x,y)
BJOS is an ϵ−approximately BJO, then for any x, y ∈ B,

we have that ϵ ∈ [0, 1). It is sufficient to show that O(ϵ:x,y)
BJOS ̸= ∅. By Hahn-

Banach theorem we have that for any y ∈ B which is nonzero, there exists

a linear functional ϕ on B to the set of complex numbers such that ϕ(y) =

∥ϕ∥∥y∥. It follows that ∥ϕ∥∥y∥ = |ϕ(x+ y)| ≤ ∥ϕ∥∥x+ y∥,∀x ∈ Ker(ϕ).

So,

y ⊥BJ x,∀x ∈ Ker(ϕ). (4.4.1)

Now consider a scalar α = ϕ(x)
∥ϕ∥∥y∥ . We obtain ϕ(x− αy) and so x− αy ∈

Ker(ϕ). From Equation 4.4.1 we have that y ⊥BJ (x − αy) and hence

α ∈ O(ϵ:x,y)
BJOS. Therefore, O

(ϵ:x,y)
BJOS is non-void.

Proposition 4.28. For any ζ ̸= 0 in C,O(ϵ:x,y)
BJOS = ζ−1O(ϵ:x,y)

BJOS.

Proof. It is known that BJ ϵ-orthogonality is homogenous. So, from the

definition of BJO, we have that O(ϵ:x,y)
BJOS = {α ∈ C : y ⊥ϵ

BJ (x − (ζα)y)}.

Remark 4.29. Next, we carry out characterization in terms of equivalent

norms in B. Consider two usual operator norms ∥.∥ and ∥.∥′ in B. We

obtain the equivalence relation between O(ϵ:x,y)
BJOS and O(ϵo:x,y)

BJOS in the next

lemma.

Lemma 4.30. Let B be a Banach space of all operators in NAv. Let ∥.∥

and ∥.∥′ be equivalent norms in B. Let P1 and P2 be positive real numbers

such that P1∥B∥ ≤ ∥B∥′ ≤ P2∥B∥, for all B ∈ B. Let x, y ∈ B with

y ̸= 0 and ϵ ∈ [0, 1). Then O(ϵ:x,y)
BJOS ⊆ O(ϵo:x,y)

BJOS where ϵo =
√

1−P1(1−ϵn)
P2

, for

all n ∈ N.
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Proof. let α ∈ O(ϵ:x,y)
BJOS. Then it follows from Proposition 4.28 that

∥x− λy∥ ≥
√
1− ϵn∥y∥|α− λ|, ∀λ ∈ C, ∀n ∈ N. (4.4.2)

or,

∥x− λy∥ ≥
√
1− ϵn

P1

P2

∥y∥|α− λ|, ∀λ ∈ C, ∀n ∈ N. (4.4.3)

which implies that

∥x− λy∥ ≥
√

1− (ϵo)n∥y∥|α− λ|,∀λ ∈ C,∀n ∈ N. (4.4.4)

From Inequalities 4.4.2 and 4.4.4 we have an implication that O(ϵ:x,y)
BJOS ⊆

O(ϵo:x,y)
BJOS .

Proposition 4.31. Let B be a SB-space of all members of NAop and

O(ϵ:A1,A2)
BJOS be of elements of B. Then O(ϵ:A1,A2)

BJOS is non-void.

Proof. This proof is a straight forward analogy of the proof of Proposition

4.27. This follows by replacing x with A1 and y with A2.

At this point, we give the relationship between NAop and NAv via O(ϵ:x,y)
BJOS

and O(ϵ:A1,A2)
BJOS .

Theorem 4.32. Let B be a SB-space and A ∈ B. Let O(ϵ:x,y)
BJOS ⊆ O(ϵ:A1,A2)

BJOS .

If x ∈ B is a left symmetric point, then Ax is a left symmetric point of B

and NAv is isometrically equivalent to NAop.

Proof. Let Ax ⊥BJ y for some y ∈ B. Trivially, if y = 0, then y ⊥BJ Ax.

So, suppose that y ̸= 0.

Now, SA = SB since A is isometric hence there exists a nonzero vector
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η ∈ B such that y = Aη. Since Ax ⊥BJ Aη and x ∈ SA, it follows that

x ⊥ η, an implication that O(ϵ:x,y)
BJOS ⊆ O(ϵ:A1,A2)

BJOS for all A1, A2 ∈ B.

Now, since B is smooth, then we have that η ⊥BJ x as x is a left symmetric

point in B. Now, B is also smooth and η
∥η∥ ∈ SA. By [57], we have that

A( η
∥η∥) ⊥BJ Ax.

But BJO is homogenous hence Aη ⊥BJ Ax. Since A is isometric operator

in NAop and x is a left isometric point in NAv, then NAop is isometrically

equivalent to NAv

Remark 4.33. Theorem 4.32 holds where B and B are both reflexive and

smooth and A ∈ B is compact.
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

In this last chapter, we draw the conclusion and make recommendations

based on our objectives of study and the results obtained therein.

5.2 Conclusion

Our first objective of this study was to establish BJO conditions for oper-

ators on Banach spaces. We have been able to show that if B is a smooth

reflexive Banach space, then for two operators A,B ∈ B, A is approxi-

mately Birkhoff-James orthogonal to the operator B, written A ⊥ϵ
BJ B if

∀λ ∈ C, ∥A+λB∥ ≥ ∥A∥2− 2ϵ∥A∥∥λB∥, ∀ϵ ∈ [0, 1). Moreover, A ⊥ϵ
BJ B

implies that µA ⊥ϵ
BJ ωB for any µ, ω ∈ C to equally show that BJO

is homogenous. We have also been able to show that if B is a SRB-
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space and A,B ∈ B, then A ⊥ϵ
BJ B on B if A and B are approximately

semi-orthogonal. Finally, we have shown that if C is a C∗-algebra, then

A ⊥s
BJ B in C if there is a state ξ in C such that ξ(AA∗) = ∥A∥ and

ξ(BB∗) = 0 for A,B ∈ C.

Our second objective of the study was to determine norm-attainability

of operators on Banach spaces via BJO. For this objective, we have been

able to show that if B is a SRB-space and A1, A2 in B are such that

A1 ⊥BJ A2, then A1, A2 ∈ NAop. We have also been able to show that

given H, a finite dimensional Hilbert space and A1, A2 ∈ B(H), then we

have that A1, A2 ∈ NAop if and only if A1 ⊥BJ A2. We have finally deter-

mined that if B is a SB-space, then A1 ⊥ϵ
BJ A2 if there exists a sequence

vn ∈ SB and another sequence ϵn of real numbers such that for all m ∈

N, ∥A1vn+λA2vn∥2 ≥ (1−ϵmn )∥A1vn∥2−nϵ
√
1− ϵmn ∥A1vn∥∥λA2∥,∀λ ≥ 0.

Our third and final objective required us to investigate the relationship

between the set of norm-attainable vectors and the set of norm-attainable

operators via BJO on Banach spaces. For this objective, we have been

able to prove that if P1 and P2 are positive real numbers such that

P1∥B∥ ≤ ∥B∥′ ≤ P2∥B∥, for all B ∈ B. Let x, y ∈ B with y ̸= 0

and ϵ ∈ [0, 1). Then O(ϵ:x,y)
BJOS ⊆ O(ϵo:x,y)

BJOS where ϵo =
√

1−P1(1−ϵn)
P2

, for all

n ∈ N. Finally, we proved that given B, a SB-space and A ∈ B. Let

O(ϵ:x,y)
BJOS ⊆ O(ϵ:A1,A2)

BJOS . If x ∈ B is a left symmetric point, then Ax is a left

symmetric point of B and NAv is isometrically equivalent to NAop.
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5.3 Recommendations

Studies on structural and geometrical properties of Banach spaces have

been carried out over decades with several interesting results obtained.

More specifically, characterization of orthogonality in different notions

has been carried out by quite a number of scholars beforehand. However,

we recommend that further studies can still be carried out to:

(i). Establish mutually strong BJO conditions for operators on Banach

spaces.

(ii). Determine norm-attainability of operators on Banach spaces via

mutually strong BJO.

(iii). Investigate the relationship between the set of norm-attainable vec-

tors and the set of norm-attainable operators via mutually strong

BJO on Banach spaces.
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