JARAMOGI OGINGA ONDINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION 2012/2013

THIRD YEAR SECOND SEMESTER EXAMINATION FOR DEGREE OF BACHELOR OF BUSINESS ADMINISTRATION WITH IT

ABA 315: QUANTITATIVE METHODS I (JOOUST MAIN CAMPUS) DATE:

INSTRUCTIONS:

- 1. This paper contains FIVE questions
- 2. Answer question ONE and ANY other two questions
- 3. Write all answers in the booklet provided
- 4. Annual planning period 300 days

QUESTION ONE

a) Outline the SIX basic steps adopted in decision making

(6marks)

b) A food product company is contemplating the introduction of a revolutionary new product with a new packaging to replace the existing product at same price (S₁) or a moderate change in the existing product with a new packaging at a small increase in price (S₂) or a small change in the existing product but without the word 'New' for a negligible increase in price (S₃). The three possible states of nature are: high increase in sales (N₁), no change in sales (N₂) and decrease in sales (N₃). The marketing department of the company provides the payoff table below for combinations of states of nature and courses of action available.

Courses of	States of nature				
action	N_1	N_2	N_3		
S_1	700,000	300,000	150,000		
S_2	500,000	450,000	0		
S_3	300,000	300,000	300,000		

Which strategy should be chosen on the basis of:

i) Maximin principle	(3marks)
ii) Laplace principle	(3marks)
iii) Savage principle	(5marks)

c) A company has annual demand for a product Z of 60,000 p.a. the cost per unit is Kshs. 4,500 and stockholding cost is 33% p.a of the stock value. Delivering cost per batch is Sh.320.
 Required:

i) Optimal inventory quantity (4marks)

ii) Total inventory cost for this transaction. (4marks)

iii) Number of orders per year for this EOQ (2marks)

iv) Outline three benefits of inventories for a business enterprise. (3marks)

QUESTION TWO

The following table shows the assessed values (in thousands dollars) and the selling prices (in thousands dollars) of eight houses, constituting a random sample of all houses sold recently in a metropolitan area:

Assessed valu(x)	70.3	102	62.5	74.8	57.9	81.6	110.4	88
Selling price (y)	114.4	169.3	106.2	125	99.8	132.1	174.2	143.5

- (a) Fit a least squares line that will enable us to predict the selling price of a house in that metropolitan area in terms of its assessed value. (8marks)
- (b) The standard error of regression of selling price on the assessed value. (10marks)
- (c) Selling price when x=78.9 or 114.2. (2marks)

QUESTION THREE

a) Differentiate the following terms as used in network analysis

i) Predecessor and successor activities (2marks)

(ii) An activity and an event (2marks)

(iii) A merger and a burst events (2marks)

b)

Activity	Preceding Activity	Duration (Weeks)
<u> </u>		0
A	-	8
В	Α	6
С	-	10
D	-	6
E	С	2
F	C,D	15
G	B,E,F	5
Н	F	8
1	G,H,J	6
J	Α	4

REQUIRED:

i.	Network diagram for the project	(8marks)
ii.	Project critical path and duration	(3marks)
iii.	Free float	(3marks)

QUESTION FOUR

A company is considering investing in an Automatic Machine for a period of two years. The machine initial cost is estimated to be \$125,000 and has the following estimated possible after-tax cash inflow pattern: In year 1, there is a 40 percent chance that the after-tax cash flow will be \$45,000, a 25 percent chance that it will be \$65,000, and a 35 percent chance that it will be \$90,000. In year 2, the after-tax cash inflow possibilities depend on the cash inflow that occurs in year 1; that is, the year 2 after-tax cash inflows are conditional probabilities. Assume that the firm's after-tax cost of capital is 12 percent. The estimated conditional after-tax cash inflows (ATCI) and probabilities are summarized as shown below:-

If $ATCI_1 = $45,000$		If ATC	$I_1 = $65,000$	If $ATCI_1 = $90,000$		
ATCI ₂ (\$)	Probability	ATCI ₂ (\$)	Probability	ATCI ₂ (\$)	Probability	
30,000	0.3	80,000	0.2	90,000	0.1	
60,000	0.4	90,000	0.6	100,000	0.8	
90,000	0.3	100,000	0.2	110,000	0.1	

Required:

- i) Advise the company on the viability of the machine using a decision tree. (16 marks)
- ii) Outline four benefits of a JIT for inventory management. (4marks)

iii)

QUESTION FIVE

The Pay-off table below indicates the financial reports purchased by Managers of a mutual funds and banks on a weekly basis. Due to high cost of these reports, demand per week is limited to a maximum of 30 units. Demand has always equal production.

Pay-off matrix

	Number of reports produced per week				
	0	10	20	30	
DEMAND					
0	0	-200	-400	-600	
10	-250	300	100	-100	
20	-250	50	600	400	
30	-250	50	350	900	

Use the pay-off matrix to compute the optimal decision using each of the criterions below:

- i) Maximax (3marks)
- ii) Hurwitz criteria (α =0.4)

(9marks)

- iii) EMV given that the respective demand levels are 0.3, 0.25 and 0.45 probabilities of occurrence. (4marks)
- iv) List four principles that guide construction of a network diagram. (4marks)