

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BUSINESS AND ECONOMICS

UNIVERSITY EXAMINATION FOR BACHELOR OF BUSINESS ADMINISTRATION WITH IT

COURSE CODE: ABA 402

COURSE TITLE: QUANTITATIVE METHODS IN BUSINESS II

EXAM VENUE: STREAM:

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer any three Questions (Question One is Compulsary)
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

ABA 402 (QUANTITATIVE METHODS IN BUSINESS II)

Q1. The following results relate to BBA students in a

Study hours	40	32	64	46	54	64
Exam score	64	61	84	70	88	92

Required:

a) Determine a suitable regression line equation (10mks)

i. Predict the exam score for 69 study hours. (2mks)

ii. State any 3 assumptions of this model (3mks)

- b) Argus furniture co. produces beds and wall units. Each bed takes 8 hours of carpentry and 4 hours of painting. Each wall unit takes 6 hours for carpentry and 2 hours for painting. During the current production period 480 hours are available for carpentry and 200hours for painting. Each bed yields £140 profit whereas each wall unit £100.
 - i. Formulate the problem using L.P model and solve graphically (12mks)

ii. Mention any 3 applications of linear programming (L.P) (3mks)

Q2. a) i) state the process of Monte Carlo simulation. (4mks)

- ii. Explain the following as used in L.P using relevant examples:- Constraint, objective function, slack variable, optimization (4mks)
- b) On average 10 customers reach a retail shop every hour. Determine the profitability that 4 customers reach the shop in 15 minutes assuming that arrival follows poisson distribution (10mks)
- c) Explain the difference between deterministic and probabilistic queuing model (2mks)
- Q3. Anyole hardware has 3 warehouses in Luanda, Yala and Bumala. The supply of timber to 4 sites namely Sio port, Busia, Kakamega and Bungoma is as illustrated below alongside demand supply and unit transport cost per Tone with regards to the different routes.

To site/ From warehouse	SITE						SUPPLY		
	Sio port		Busia		Kakamega		Bungoma		
Luanda		10		2		20		11	15
Yala		12		7		9		20	25
Bumala		4		14		16		18	10
DEMAND	5		15		15		15		50

- i. Determine the routes that results to optimal transport cost using least cost method (15mks).
- ii. Use (i) to determine the minimum transport cost (5mks)

Q4. The cost matrix below relates to assignment of jobs by a supervisor to 4 machines operators to attain the least cost used on his past experience.

The supervisor is considering how he should assign four jobs to be performed by 4 operators. He wants to assign jobs to realize least costs operations. He has the information on time and cost, taken by the operators in performing the jobs.

MACHINE	OPERATORS						
	1	2	3	4			
A	10	5	13	15			
В	3	9	18	3			
С	10	7	3	2			
D	5	11	9	7			

- i. Determine the optimal assignment to attain the least cost. (15mks)
- ii. Determine the cost of the assignment (5mks)

Q.5. A furniture manufacturing company intends to make 2 products chairs and tables from its available resources which consists of 400 board feet of mahogany timber and 450 man hours of labour. To make a chair it requires 5 feet and 10 machine hours to yield a profit of 45£ and to make a table requires 20 board feet and 15 man hours to make a profit of £80. Use simplex method to determine the numbers of chairs and tables required to maximize the profit. (20mks)