

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE PUBLIC HEALTH AND COMMUNITY HEALTH & DEVELOPMENT 1ST YEAR 1ST SEMESTER 2016/17 KISUMU LEARNING CENTRE

COURSE CODE: SCH 3111

COURSE TITLE: PHYSICAL CHEMISTRY

EXAM VENUE: STREAM: (BSC. PUB. & COMMU. HEALTH & DEV.)

DATE:

EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- 1. Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

INSTRUCTIONS: Answer Question 1 and any other TWO questions

QUESTION ONE (30 marks)

- 1. (a) Define the following;
 - (i) Grahams law of effusion
 - (ii) Ideal gas
 - (iii) Oxidation as used in electrochemistry
 - (iv) Dalton's law of partial pressure
 - (v) Boyle's law
 - (vi) Avogadro's law

(b) Two moles of carbon dioxide was found to occupy 1.32 litres at 50 $^{\circ}$ C and a pressure of 18.40 atms. Calculate the pressure that would have been expected;

(i) From the equation of state

(ii) From the Van der Waal's equation (a = $6.70 \text{ L}^2 \text{ atm.mol}^{-2}$, b = $5.6 \text{ x} 10^{-2}$ L.mol⁻¹, R= $0.082 \text{ L} \text{ atm. K}^{-1} \text{mol}^{-1}$). [7 marks]

(c) Discuss how each of the following factors affect equilibrium in relation to the Le Chatelier's principle:

(i) Temperature(ii) Pressure(iii) Concentration(iv) Catalyst

[-----

QUESTION TWO (20 marks)

2. (a)	Write down the	Van der Waal's e	quation of a real gas.	[2 marks]
--------	----------------	------------------	------------------------	-----------

(b) Explain clearly the meaning of the corrective terms for

(i)	Pressure	
(ii)	Volume	[4 marks]

(c) 1.0 g of air consists of approximately 0.8 g of nitrogen and 0.2 g of oxygen. Calculate the partial pressures and the total pressure when this sample occupies a 2.00 L vessel at 20 °C. [7 marks]

(d) Consider the following reaction

(e) One mole of an ideal gas occupies 12 Litres at 25 °C. What is the pressure of the gas? [3 marks]

[12 marks]

[3 marks]

[8 marks]

QUESTION THREE (20 marks)

3.	(a) Hydrogen gas is prepared by reacting Magnesium with hydrochloric ac the following chemical equation; $2HCl_{(aq)} + Mg_{(s)} \rightarrow MgCl_{2(aq)} + H_{2(g)}$ Calculate the amount of Magnesium in kilograms required to prepare 2.00 at 1 atm and 30 °C.				
	(b) The state of a gas is defined by 4 variables. Name them.	[4 marks]			
	(c) State the FIVE postulates of the kinetic theory of gases. [10 m	arks]			
QUESTION FOUR (20 marks)					
4.	(a) Define the term reaction quotient and equilibrium constant as use chemical equilibria.	d in [4 marks]			
(b) For the reaction; $SO_{2(g)} + NO_{2(g)} \leftrightarrow SO_{3(g)} + NO_{(g)}$, $K_c = 9.00$ at 973 K. If 1.00 mole of SO_3 and 1 mole of NO are injected into a 1.00 litre flask at 973 K. Predict the direction in which the reaction would proceed with reasons. [2 marks]					
(c)	Define colligative property of a solution and give its properties.	[6 marks]			
	(d) (i) State the Le Chatelier's Principle	[2 marks]			
	(ii) Consider the following equation $N_{2 (g)} + 3H_{2 (g)} \leftrightarrow 2 NH_{3 (g)}$ What is the effect of increasing pressure to this equation?	[3 marks]			
	(e) A weather balloon has a volume of 175 L when filled with hydrogen at a pressure of 1 atm. Calculate the volume of the balloon when it rises to a height of 2000 m, where the atmospheric pressure is 0.80 atm. Assume the temperature is constant.				

[3 marks]