

# JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

# SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (ANIMAL SCIENCE)

1<sup>ST</sup> YEAR 2<sup>ND</sup> SEMESTER 2016/17

## **MAIN REGULAR**

**COURSE CODE: SCH 3129** 

**COURSE TITLE: BIOINORGANIC CHEMISTRY** 

EXAM VENUE: STREAM: (BSC. ANIM. SCI)

DATE: EXAM SESSION:

**TIME: 2:00HRS** 

**Instructions:** 

- 1. Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

#### **Section A**

#### **Answer All Questions in Section A**

#### **Question 1**

- a) Using examples, demonstrate the essentiality of elements to different biological functions. (3 marks)
- b) Every essential element follows a dose-response curve; briefly discuss this curve with respect to iron (Fe). (6 marks)
- c) The active site of an enzyme is designed to exclude water  $(H_2O)$ , how is this achieved. (3 marks)
- d) The following enzymes are essential in various biological processes.Briefly discuss these processes. (6 marks)

- e) Porphyrins are found in many metalloenzymes, briefly discuss the enzymes and functions of the following Porphyrins.
  - i. Fe-polyphyrin
  - ii. Mg-polyphyrin

(6 marks)

f) Given the following polyphyrins, distinguish their structural differences and give the name of each of the polyphyrin.

(6 marks)

(30 marks)

## **Section B**

Answer any Two Questions

**Question 2** 

- a) Discuss the active site differences between Hemoglobin and Cytochrome. (10 marks)
- b) Briefly describe the Biological functions of following selected metal ions.
  - i. Na and K
  - ii. Mg and Zn
  - iii. V and Mo
  - iv. Fe and Cu
  - v. Ni (10 marks)

(20 marks)

# **Question 3**

- a. Briefly describe the toxicity due to CN<sup>-</sup> on the Cytochrome. (4 marks)
- b. Using diagrams describe the intake of oxygen by deoxyhemoglobin and the release of oxygen by hemoglobin.

(16 marks)

(20 marks)

# **Question 4**

- a) Briefly discuss the periodic table of bio-elements essential to life forms under the following categories.
  - i. Bulk elements
  - ii. Macro-minerals and ions
  - iii. Trace elements
  - iv. Ultra-trace elements (non-metals)
  - v. Ultra-trace elements (metals)

(10 marks)

|        | eleme  | ents to organisms.                                          |          |        |
|--------|--------|-------------------------------------------------------------|----------|--------|
|        | i.     | Na <sup>+</sup> and K <sup>+</sup>                          |          |        |
|        | ii.    | $Mg^{2+}$                                                   |          |        |
| j      | iii.   | $Ca^{2+}$                                                   |          |        |
|        | iv.    | $V^{IV}, Mo^{IV/VI}, W^{IV/VI}, Mn^{II/II/IV}, Fe^{II/III}$ |          |        |
|        | v.     | Fe and Cu                                                   |          |        |
|        | vi.    | $\mathbb{Z}n^{2+}$                                          |          |        |
| V      | ⁄ii.   | $\mathrm{Si}^{\mathrm{IV}}$                                 |          |        |
| V      | iii.   | $P^{V}$                                                     |          |        |
|        | ix.    | Se <sup>II</sup>                                            |          |        |
|        | х.     | F <sup>-</sup>                                              |          |        |
|        | xi.    | Cl <sup>-</sup>                                             |          |        |
| X      | кіі.   | I <sup>-</sup>                                              | (10 marl | ks)    |
|        |        |                                                             | (20 marl | ks)    |
| Questi | on 5   |                                                             |          |        |
| a) U   | Using  | examples, discuss the role of biomolecules in the           | photosyn | thetic |
| ŗ      | proces | ss under the following subtopics.                           | (10 marl | ks)    |
|        | vi.    | Chlorophyl (structure and function)                         |          |        |
| V      | ⁄ii.   | Role of Manganese in Photosynthesis                         |          |        |
| V      | iii.   | Mg-porphyrin                                                |          |        |
| b) I   | Discus | ss the nitrogen fixation of nitrogenase-nitrogen            | through  | metal  |
| C      | compl  | exes.                                                       | (10 marl | ks)    |

b) Briefly discuss the significance of the following biologically important

(20 marks)

Periodic table

|     |       |        |          |       |        | •        | Atomic         | — Atomic number. Z                   |                      |        |          |        |        |          |        |                |
|-----|-------|--------|----------|-------|--------|----------|----------------|--------------------------------------|----------------------|--------|----------|--------|--------|----------|--------|----------------|
|     |       |        |          | •     | _      | ′ \      | , -            | _                                    |                      |        |          |        |        |          |        | 18             |
|     |       |        |          |       | _      |          | Element symbol | symbol                               |                      |        |          |        |        |          |        | 2              |
| H 2 |       |        |          | 1.0   | 800    | <b>\</b> | Relative       | Relative atomic mass, A <sub>r</sub> | iass, A <sub>r</sub> | '      | 13       | 14     | 15     | 16       | 17     | <b>He</b> 4.00 |
|     |       |        |          |       |        |          |                |                                      |                      |        | 5        | 9      | 7      | 8        | 6      | 10             |
|     |       |        |          |       |        |          |                |                                      |                      |        | Ω        | U      | z      | 0        | ш      | Ne             |
|     |       |        |          |       |        |          |                |                                      |                      |        | 10.81    | 12.01  | 14.01  | 16.00    | 19.00  | 20.18          |
|     |       |        |          |       |        |          |                |                                      |                      |        | 13       | 14     | 15     | 16       | 17     | 18             |
|     |       |        |          | ,     |        |          |                |                                      |                      |        | ⋖        | Si     | ۵      | S        | U      | Ā              |
|     | m     | 4      | 2        | 9     | 7      | œ        | <b>o</b>       | 10                                   | 7                    | 12     | 26.98    | 28.09  | 30.97  | 32.06    | 35.45  | 39.95          |
|     | 21    | 22     | 23       | 24    | 25     | 56       | 27             | 28                                   | 29                   | 30     | 31       | 32     | 33     | 34       | 35     | 36             |
|     | Sc    | F      | >        | Ċ     | Z      | Fe       | ပိ             | Z                                    | J                    | Zn     | Сa       | Ge     | As     | Se       | Ā      | Ž              |
|     | 44.96 | 47.90  | 50.94    | 52.01 | 54.94  | 55.85    | 58.93          | 58.69                                | 63.54                | 65.41  | 69.72    | 72.59  | 74.92  | 78.96    | 79.91  | 83.80          |
|     | 39    | 40     | 41       |       | 43     | 44       | 45             | 46                                   | 47                   | 48     | 49       | 50     | 51     | 52       | 53     | 54             |
|     | >     | Zr     | Q<br>Q   |       | 2      | Ru       | Rh             | Pd                                   | Ag                   | ਨ      | <u>_</u> | Sn     | Sb     | <u>P</u> | _      | ×e             |
|     | 88.91 | 91.22  | 92.91    |       | 98.91  | 101.07   | 102.91         | 106.42                               | 107.87               | 112.40 | 114.82   | 118.71 | 121.75 | 127.60   | 126.90 | 131.30         |
|     |       | 72     | 73       |       | 75     | 9/       | 77             | 78                                   | 79                   | 80     | 81       | 82     | 83     | 84       | 85     | 98             |
|     | La-Lu | Ŧ      | <u>a</u> | >     | Re     | Os       | _              | 꿉                                    | Αn                   | Hd     | F        | Pb     | E      | Ъо       | At     | Rn             |
|     |       | 178.49 | 180.95   |       | 186.21 | 190.23   | 192.22         | 195.08                               | 196.97               | 200.59 | 204.37   | 207.19 | 208.98 | 210      | 210    | 222            |
|     |       | 104    | 105      |       | 107    | 108      | 109            | 110                                  | 111                  | 112    |          |        |        |          |        |                |
|     | Ac-Lr | Rf     | Op       | Sg    | Bh     | Hs       | Ĭ              | Ds                                   | Rg                   | Oub    |          |        |        |          |        |                |
|     |       | [261]  | [592]    |       | [564]  | [277]    | [568]          | [271]                                | [272]                | [285]  |          |        |        |          |        |                |

|             | 57     | 58     | 59     | 09     | 61     | 62     | 63     | 64     | 65     | 99     | 29     | 89     | 69     | 70             | 71     |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|--------|
| Lanthanoids | La     | o      | P      | ρN     | Pm     | Sm     | Eu     | В      | q      | Δ      | 유      | ш      | Tm     | Υb             | Γn     |
|             | 138.91 | 140.12 | 140.91 | 144.24 | 146.92 | 150.35 | 151.96 | 157.25 | 158.92 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04         | 174.97 |
|             | 89     | 90     | 91     | 92     | 93     | 94     | 95     | 96     | 97     | 86     | 66     | 100    | 101    | 102            | 103    |
| Actinoids   | Ac     | 보      | Pa     | ⊃      | Q<br>N | Pu     | Am     | E      | BK     | ᠸ      | Es     | Fm     | Σ      | N <sub>o</sub> | ۲      |
|             | 227.03 | 232.04 | 231.04 | 238.03 | 237.05 | 239.05 | 241.06 | 244.07 | 249.08 | 252.08 | 252.09 | 257.10 | 258.10 | 259            | 297    |