

## JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

# SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

# UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

# 3<sup>RD</sup> YEAR 1<sup>ST</sup> SEMESTER 2016/2017 ACADEMIC YEAR

MAIN

# REGULAR

COURSE CODE: SPH 303

COURSE TITLE: QUANTUM MECHANICS I

EXAM VENUE:

**STREAM: EDUCATION** 

DATE:

EXAM SESSION:

TIME: 2:00 HRS

**Instructions:** 

- 1. Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

## Useful constants

 $h = 1.054 x 10^{-34} Js$   $1eV = 1.6 x 10^{-19} J$   $h = 6.63 x 10^{-34} Js$ Mass of electron = 9.1 x 10^{-31} kg
Mass of proton = 1.672 x 10^{-27} kg

## **SECTION A**

## **QUESTION 1(30 MARKS)**

a)

| i. Calculate the <b>de Broglie</b> wavelength for an electron having kinetic energy of <b>1</b> <i>eV</i> .                                                                                 |                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1. Calculate the <b>de Droghe</b> wavelength for a                                                                                                                                          | (3 marks)                                                    |
| ii. In the <b>double-slit experiment</b> , two waves defined by $\psi_1 = \frac{1}{\sqrt{2}}e^{ix}$ and $\psi_2 = e^{ix}$ pass                                                              |                                                              |
| through the slits. Determine the probabilit                                                                                                                                                 |                                                              |
|                                                                                                                                                                                             | (4 marks)                                                    |
| b) Explain the <b>probabilistic interpretation</b>                                                                                                                                          | of quantum mechanics.                                        |
|                                                                                                                                                                                             | (2 marks)                                                    |
| c) Derive the <b>time-independent</b> Schröding                                                                                                                                             | -                                                            |
| d) Define the following terms as used in qu                                                                                                                                                 | antum mechanics.                                             |
| i. Bound state.                                                                                                                                                                             | (1 mark)                                                     |
| ii. Tunnelling.                                                                                                                                                                             | (1 mark)                                                     |
| e) The <b>expectation value</b> of the position of a particle described by the wave function $\boldsymbol{\psi}$ =                                                                          |                                                              |
| $\frac{1}{2}x$ limited to the x-axis between $x = 0$ and $x = b$ is $\frac{1}{16}$ . Find the value of $b$ .                                                                                |                                                              |
|                                                                                                                                                                                             | (3 marks)                                                    |
| f) Prove that the <b>commutation brackets</b>                                                                                                                                               |                                                              |
| $\left[\widehat{A},\left[\widehat{B},\widehat{C}\right]\right]+\left[\widehat{B},\left[\widehat{C},\widehat{A}\right]\right]+\left[\widehat{C},\left[\widehat{A},\widehat{B}\right]\right]$ |                                                              |
| g) An <b>eigenfunction</b> of the operator $\frac{d^2}{dx^2}$ is a                                                                                                                          | $\psi = e^{2x}$ . Find the corresponding <b>eigenvalue</b> . |
|                                                                                                                                                                                             | (3 marks)                                                    |
| h) An operator is defined by $\widehat{D}_x = \frac{\partial}{\partial x}$ . Determine the Heisenberg's uncertainty product                                                                 |                                                              |
| in the measurement of $\widehat{x}$ and $\widehat{D}_{x}$ .                                                                                                                                 | (4 marks)                                                    |
| i) State <b>ONE</b> postulate of Quantum mechan                                                                                                                                             | nics. (1 mark)                                               |

#### **SECTION B**

## Answer any TWO questions in this section.

## **QUESTION 2 (20 MARKS)**

a) Solve the one –dimensional time-independent Schrödinger equation for a particle in a **step potential with a step height** greater than the total energy.

#### (15 marks)

b) Estimate the **penetration distance** for a very small dust particle of mass  $5x10^{-14} kg$ moving at a velocity of **0**. **02**  $ms^{-1}$  if the particle impinges on a potential step of height twice its kinetic energy. (5 marks)

#### **QUESTION 3 (20 MARKS)**

a) Show that the general wave function for a free particle in one-dimensional motion is given by  $\psi(x) = a\cos\frac{1}{\hbar}(px + \hbar\theta)$  where the symbols have their usual meanings.

(16 marks)

b) Show that the constant *E* in the time-independent Schrödinger equation is the **expectation** value of the Hamiltonian. (4 marks)

#### **QUESTION 4 (20 MARKS)**

- a) A measurement establishes the position of a proton with an accuracy of  $1.00 \times 10^{-11} m$ . Use Heisenberg's uncertainty principle to find the uncertainty in the proton's position 1.00 s later. (9 marks)
- b) The Hamiltonian of a quantized **linear harmonic oscillator** is given by  $\widehat{H} = \hbar \omega \left( \widehat{a}^{+} a + \frac{1}{2} \right)$ . Obtain an expression for the energy at second energy level.

(7 marks)

c) Calculate the frequency of a **harmonic oscillator** at ground state if the ground state energy is **3.4** *eV*. (4 marks)

### **QUESTION 5 (20 MARKS)**

a) Consider a particle in **an infinite potential** box (potential zero inside the box and infinity outside) which extends from x = 0 to  $x = \pi$  Å. Obtain an expression for the energy eigenvalues in terms of n where n = 1, 2, ...

(9 marks)

b) Suppose an electron has a wave function  $\psi(x) = cx^3 e^{-\alpha |x|}$  where  $\alpha$  is a constant. Page **3** of **4**  i. Find the constant *c* that ensures the given wave function is properly **normalized**. You may use the standard integral

$$\int_0^\infty x^n e^{-bx} dx = \frac{n!}{b^{n+1}}$$
 (6 marks)

ii. Find the **expectation** value of x.

(5 marks)