JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
$3^{\text {RD }}$ YEAR $1^{\text {ST }}$ SEMESTER 2016/2017 ACADEMIC YEAR

MAIN
REGULAR

COURSE CODE: SPH 303
COURSE TITLE: QUANTUM MECHANICS I
EXAM VENUE:
STREAM: EDUCATION
DATE:
EXAM SESSION:
TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful constants

$\hbar=1.054 \times 10^{-34} \mathrm{JS}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$
Mass of proton $=1.672 \times 10^{-27} \mathrm{~kg}$

SECTION A

QUESTION 1(30 MARKS)

a)
i. Calculate the de Broglie wavelength for an electron having kinetic energy of $\mathbf{1} \boldsymbol{e V}$.
(3 marks)
ii. In the double-slit experiment, two waves defined by $\boldsymbol{\psi}_{1}=\frac{1}{\sqrt{2}} e^{i x}$ and $\psi_{2}=e^{i x}$ pass through the slits. Determine the probability density on the screen.
(4 marks)
b) Explain the probabilistic interpretation of quantum mechanics.
c) Derive the time-independent Schrödinger equation.
(4 marks)
d) Define the following terms as used in quantum mechanics.
i. Bound state.
(1 mark)
ii. Tunnelling.
(1 mark)
e) The expectation value of the position of a particle described by the wave function $\boldsymbol{\psi}=$ $\frac{1}{2} x$ limited to the x-axis between $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x}=\boldsymbol{b}$ is $\frac{\mathbf{1}}{\mathbf{1 6}}$. Find the value of \boldsymbol{b}.
(3 marks)
f) Prove that the commutation brackets

$$
\begin{equation*}
[\widehat{A},[\widehat{B}, \widehat{C}]]+[\widehat{B},[\widehat{C}, \widehat{A}]]+[\widehat{C},[\widehat{A}, \widehat{B}]]=0 \tag{4marks}
\end{equation*}
$$

g) An eigenfunction of the operator $\frac{d^{2}}{d x^{2}}$ is $\boldsymbol{\psi}=e^{2 x}$. Find the corresponding eigenvalue.
h) An operator is defined by $\widehat{\boldsymbol{D}}_{\boldsymbol{x}}=\frac{\partial}{\partial \boldsymbol{x}}$. Determine the Heisenberg's uncertainty product in the measurement of $\widehat{\boldsymbol{x}}$ and $\widehat{\boldsymbol{D}}_{\boldsymbol{x}}$.
i) State ONE postulate of Quantum mechanics.

SECTION B

Answer any TWO questions in this section.

QUESTION 2 (20 MARKS)
a) Solve the one-dimensional time-independent Schrödinger equation for a particle in a step potential with a step height greater than the total energy.
(15 marks)
b) Estimate the penetration distance for a very small dust particle of mass $\mathbf{5 x 1 0}^{\mathbf{- 1 4}} \boldsymbol{k g}$ moving at a velocity of $\mathbf{0 . 0 2} \mathbf{m s}^{\mathbf{- 1}}$ if the particle impinges on a potential step of height twice its kinetic energy.
(5 marks)

QUESTION 3 (20 MARKS)

a) Show that the general wave function for a free particle in one-dimensional motion is given by $\boldsymbol{\psi}(\boldsymbol{x})=\boldsymbol{\operatorname { a r o s }} \frac{\mathbf{1}}{\hbar}(\boldsymbol{p} \boldsymbol{x}+\hbar \boldsymbol{\theta})$ where the symbols have their usual meanings.
(16 marks)
b) Show that the constant \boldsymbol{E} in the time-independent Schrödinger equation is the expectation value of the Hamiltonian.
(4 marks)

QUESTION 4 (20 MARKS)

a) A measurement establishes the position of a proton with an accuracy of $1.00 \boldsymbol{x} \mathbf{1 0}^{\mathbf{- 1 1}} \boldsymbol{m}$. Use Heisenberg's uncertainty principle to find the uncertainty in the proton's position $\mathbf{1 . 0 0} \boldsymbol{s}$ later.
(9 marks)
b) The Hamiltonian of a quantized linear harmonic oscillator is given by

$$
\widehat{\boldsymbol{H}}=\hbar \boldsymbol{\omega}\left(\widehat{\boldsymbol{a}}^{+} \boldsymbol{a}+\frac{\mathbf{1}}{\mathbf{2}}\right) . \text { Obtain an expression for the energy at second energy level. }
$$

c) Calculate the frequency of a harmonic oscillator at ground state if the ground state energy is $\mathbf{3 . 4} \mathbf{e V}$.

QUESTION 5 (20 MARKS)

a) Consider a particle in an infinite potential box (potential zero inside the box and infinity outside) which extends from $\boldsymbol{x}=\mathbf{0}$ to $\boldsymbol{x}=\boldsymbol{\pi} \AA$. Obtain an expression for the energy eigenvalues in terms of \boldsymbol{n} where $\boldsymbol{n}=\mathbf{1}, \mathbf{2}, \ldots$
(9 marks)
b) Suppose an electron has a wave function $\boldsymbol{\psi}(\boldsymbol{x})=\boldsymbol{c} \boldsymbol{x}^{3} \boldsymbol{e}^{-\boldsymbol{\alpha}|\boldsymbol{x}|}$ where $\boldsymbol{\alpha}$ is a constant.
i. Find the constant \boldsymbol{c} that ensures the given wave function is properly normalized.

You may use the standard integral
$\int_{0}^{\infty} x^{n} e^{-b x} d x=\frac{n!}{b^{n+1}}$ (6 marks)
ii. Find the expectation value of \boldsymbol{x}. (5 marks)

