JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION
$2^{\text {ND }}$ YEAR $2^{\text {ND }}$ SEMESTER 2016/2017

MAIN REGULAR

COURSE CODE: SPH 203
COURSE TITLE: MATHEMATICAL METHODS FOR PHYSICS I

EXAM VENUE: LAB 2
STREAM: (B.Ed Sc)
DATE: 09/04/2017
EXAM SESSION: 8.00 A.M. - 10.00 A.M.

TIME: 2:00 HRS

INSTRUCTIONS:

1. Attempt question 1 (compulsory) and ANY other two questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question 1

(a) (i) Compute the limit

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{\sqrt[3]{x}-1}
$$

(ii) Show that $\cosh ^{2} x-\sinh ^{2} x=1$
(b) Find the derivative of the function

$$
y(x)=\sin \left(3 x^{2}+2\right)^{2}
$$

(c) Evaluate the following integral,

$$
\int x \sin 5 x \mathrm{~d} x
$$

(d) (i) List down any four axioms of a vector space.
(ii) Investigate whether the following is a basis for \mathbb{R}^{2},

$$
\left\langle\binom{ 2}{4},\binom{1}{1}\right\rangle
$$

(e) Determine a scalar c such that the following vectors are orthogonal,

$$
\vec{a}=2 \hat{\mathbf{i}}-c \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \quad \vec{b}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}
$$

(4 Marks)
(f) The potential energy between two atoms in a diatomic molecule is given by $U(x)=$ $2 / x^{12}-1 / x^{6}$. Find the minimum potential energy between the two atoms.

Question 2

(a) Use de L'Hôpital's rule to evaluate,

$$
\lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+x}-x\right]
$$

(b) A series is given by

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Find the radius and interval of convergence for the series.
(c) Given the sine series,

$$
\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

use calculus to obtain the cosine series. Hence calculate the cosine of 0.1 radians.
(d) Evaluate the following geometric sum,

$$
\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\cdots+\frac{1}{2916}
$$

Question 3

Use an appropriate method to evaluate,

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{3+2 \cos x+3 \sin x}
$$

(20 Marks)

Question 4

(a) A curve C has the parametric equations $x=2 t-5, y=t^{2}-4 t+3$. Find an equation of the tangent line to C that is parallel to the line $y=3 x+1$.
(6 Marks)
(b) A boy wishes to cut a 2.5 m long piece of wire into two pieces. One piece will be bent into a circular shape and the other into the shape of a square. Find the length that each wire should have so that the sum of the areas is a maximum (you may leave your answers in terms of π).
(10 Marks)
(c) Differentiate with respect to x :
(i) $y=x^{2} e^{3 x}$
(ii) $y=\ln \left(2 x^{3}+x^{2}\right)$

Question 5

(a) (i) Given that $\vec{a}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\vec{b}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$, evaluate the vector product $\vec{a} \times \vec{b}$. (ii) Obtain the component of \vec{a} in the direction of \vec{b}.
(b) The coordinates (x, y, z) of points A and B on a cartesian coordinate system are $(1,1,1)$ and $(3,5,6)$ respectively.
(i) Write down the position vectors \vec{a} and \vec{b} of the points A and B , hence find
(ii) the displacement vector $\overrightarrow{A B}$.
(iii) the unit vector parallel to $\overrightarrow{A B}$.
(iv) the coordinates of a point P on AB such that the ratio of the displacement vectors $\overrightarrow{A B}$ and $\overrightarrow{P B}$ is $\overrightarrow{A B}: \overrightarrow{P B}=1: 3$.
(c) Consider a particle whose position vector is defined as,

$$
\vec{r}(t)=\left(2 t^{2}-1\right) \hat{\mathbf{\imath}}+\left(4 t^{3}-3\right) \hat{\mathbf{j}}
$$

Find an expression for the acceleration at any time t.
(3 Marks)

