JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
 UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
 ACTUARIAL
 $1^{\text {ST }}$ YEAR $^{\text {ND }}{ }^{\text {ND }}$ SEMESTER 2016/2017 ACADEMIC YEAR

COURSE CODE: SMA 3121
COURSE TITLE: MATHEMATICS II
EXAM VENUE:
STREAM: (Eng, Agric, Community Health.)
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

a) A line l_{1} passes through the points $\mathrm{A}(4,5)$ and $\mathrm{B}(-2,7)$
i. Determine the equation of the line l_{1}
ii. Determine the length of l_{1}.
iii. Determine the equation of l_{2}, the perpendicular bisector to AB
b) Use the cramers rule to solve.

$$
\begin{align*}
& 3 x+2 y=12 \\
& 4 x-y=5 \tag{3mks}
\end{align*}
$$

c) Find the derivative of $f(x)=2 x^{3}+\frac{x^{2}}{4}-3 x+4$.
d) Find

$$
\begin{gather*}
\operatorname{Lim} \frac{x 3-1}{x-1} \\
x \rightarrow 1 \tag{5mks}
\end{gather*}
$$

e) Find the determinant of the matrix $\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 2 & 4 \\ -1 & 1 & 0\end{array}\right]$.
f) Find the value of the unknown if the matrix

$$
\left[\begin{array}{cc}
2 x+14 & 4 \\
-3 & 2 x
\end{array}\right] \quad \text { is a singular matrix. }
$$

QUESTION TWO (20 marks)

a) Find $\lim _{n \rightarrow \infty} \frac{4 x^{5}-15 x^{2}+4}{3 x^{5}-2 x}$.
b) Solve the system of linear equations below using Cramer's Rule.
$x-3 z=-2$
$3 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=5$
$2 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=4$.
c) A line l_{2} passes through the point $(2,-3)$ and is perpendicular to the line $3 y+2 x-4=0$. Determine the equation of the line l_{2}.

QUESTION THREE (20 marks)

a) Calculate the shaded area in the figure below.

b) The displacement of a particle after t seconds is given by $S=40 t^{3}-t^{2}-3 t+3$. Find the.
i) Velocity of the particle when $t=2$ seconds.
ii) Acceleration of the particle when $\mathrm{t}=3$ seconds.
c) i) Maximum displacement.
iii) Minimum velocity of the particle.

QUESTION FOUR (20 marks)

a) Determine the points of discontinuities of the function $f(x)=\frac{x^{2}+x-6}{x^{2}-4}$. Hence or otherwise find $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4}$.
b) Evaluate $\int_{-1}^{1}\left(6 x^{2}+4 x+2\right) d x$.
c) As blood moves from the heat through major arteries out to the capillaries and back through the veins, the system blood pressure continuously drops. Consider a person whose systolic blood pressure P. (in millimeters of mercury) is given by.
$\mathrm{P}=\frac{25 t^{2}+125}{t^{2}+1}, 0 \leq \mathrm{t} \leq 10$
where t is measured in seconds. At what rate is the blood pressure changing 5 seconds after blood leaves the heart.

QUESTION FIVE (20 marks)

a) Given that $f(x)=2 x^{3}-4 x^{2}$, determine the minima and the maxima. (8 mks)
b) Given a system of linear equations

$$
\begin{aligned}
x+2 y+2 z & =4 \\
2 x-3 y-z & =-5 \\
-3 x+y & =-2 .
\end{aligned}
$$

(i) Express the system in the form of matrix equation $A B=C$, where A is a 3×3 matrix of coefficients of the variables B and C is a suitable column matrix. (2 mks)
(ii) Determine the adjoint of the matrix A.
(iii) Hence solve the system of equations using the adjoint.

