

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 1ST YEAR 2ND SEMESTER 2016/2017 ACADEMIC YEAR

COURSE CODE: SMA 3121

COURSE TITLE: MATHEMATICS II

EXAM VENUE:

STREAM: (Eng, Agric, Community Health.)

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

- a) A line l_1 passes through the points A(4,5) and B(-2,7)
 - i. Determine the equation of the line l_1 (2mks)

(2mks)

(5mks)

- ii. Determine the length of l_1 .
- iii. Determine the equation of l_2 , the perpendicular bisector to AB (2mks)
- b) Use the cramers rule to solve.

3x + 2y = 124x - y = 5

c) Find the derivative of
$$f(x) = 2x^3 + \frac{x^2}{4} - 3x + 4$$
. (3mks)

- d) Find $\lim \frac{x^{3-1}}{x-1}$ $x \rightarrow 1$ (5mks)
- e) Find the determinant of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 0 & 2 & 4 \\ -1 & 1 & 0 \end{bmatrix}$. (4mks)
- f) Find the value of the unknown if the matrix

$$\begin{bmatrix} 2x + 14 & 4 \\ -3 & 2x \end{bmatrix}$$
 is a singular matrix. (5mks)

QUESTION TWO (20 marks)

- a) Find $\lim_{n \to \infty} \frac{4x^5 15x^2 + 4}{3x^5 2x}$. (5mks)
- b) Solve the system of linear equations below using Cramer's Rule.
 x 3z = -2
 3x + y 2z = 5
 2x + 2y + z = 4.

 (10mks)
- c) A line l_2 passes through the point (2,-3) and is perpendicular to the line 3y + 2x - 4 = 0. Determine the equation of the line l_2 . (5mks)

QUESTION THREE (20 marks)

a) Calculate the shaded area in the figure below.

b) The displacement of a particle after t seconds is given by

 $S=40t^3-t^2 - 3t + 3$. Find the.

i)	Velocity of the particle when t=2 seconds.	(4 mks)
ii)	Acceleration of the particle when t=3 seconds.	(3 mks)
c)	i) Maximum displacement.	(3 mks)
iii)	Minimum velocity of the particle.	(3mks)

QUESTION FOUR (20 marks)

- a) Determine the points of discontinuities of the function $f(x) = \frac{x^2 + x 6}{x^2 4}$. Hence or otherwise find $\lim_{x \to 2} \frac{x^2 + x 6}{x^2 4}$. (7mks)
- b) Evaluate $\int_{-1}^{1} (6x^2 + 4x + 2) dx$. (4mks)
- c) As blood moves from the heat through major arteries out to the capillaries and back through the veins, the system blood pressure continuously drops. Consider a person whose systolic blood pressure P. (in millimeters of mercury) is given by.

$$P = \frac{25t^2 + 125}{t^2 + 1}, \ 0 \le t \le 10$$

where t is measured in seconds. At what rate is the blood pressure changing 5 seconds after blood leaves the heart. (8 mks)

QUESTION FIVE (20 marks)

- a) Given that $f(x) = 2x^3 4x^2$, determine the minima and the maxima. (8mks)
- b) Given a system of linear equations

$$x + 2y + 2z = 4$$

$$2x - 3y - z = -5$$

$$-3x + y = -2.$$

- (i) Express the system in the form of matrix equation AB = C, where A is a 3×3 matrix of coefficients of the variables B and C is a suitable column matrix. (2 mks)
 (ii) Determine the adjoint of the matrix A. (5 mks)
- (iii) Hence solve the system of equations using the adjoint. (5mks)