

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE

ACTUARIAL

2ND YEAR 1ST SEMESTER 2016/2017 ACADEMIC YEAR

MAIN REGULAR

COURSE CODE: SAS 201

COURSE TITLE:SAMPLE SURVEYS

EXAM VENUE:

STREAM:

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) -(30 MARKS)

- a) By first defining the terms *sample* and *census* as used in survey sampling, give reasons why sampling may be preferred to a census and briefly describe the methods of sampling. (3mks)
- b) Briefly explain the phrase *sampling frame* as used in survey sampling and give its importance in the study of finite populations? (2mks)
- c) Give the advantages and also the disadvantages of personal interviews as a method of collecting data. Conclude by giving a personal opinion regarding these face to face or personal interviews as a method of data collection. (6mks)
- d) Using the random number generator table in Cambridge press SMP, explain how you will select a sample of ten people from a group of 100 people (6mks)
- e) Suppose the population mean is known and it is required that the sample mean should not differ from it by more than a specified amount of absolute error estimation which is a small positive quantity given a level of significance, obtain an appropriate sample size assuming SRSWOR and that N is large enough. (5marks)
- f) A population of 1000 is divided into 4 strata. The sizes of the strata and variances are given as follows.

S	t	r	a	t	a	А			В			С			D		
S		i	Z		e	1	8	0	2	5	0	2	7	0	3	0	0
v	a	r i	a ı	n c	e	2		5	6		4	1	2	1	1	6	9

A stratified sample of size 100 is to be drawn from the population. Determine the sample sizes in case of

- i. Proportional allocation.
- ii. Optimum allocation (6marks)
- g) Distinguish clearly between multistage sampling and systematic sampling. (4marks)

QUESTION TWO (20 MARKS)

a. The following table gives values for two variables x and y sampled from a population of 64 households.

Х	50	59	60	62	64	60	58	69	66	67	61	67	68	72	74	71
у	30	31	32	33	36	33	29	38	34	36	33	38	36	41	40	42

i. It is suggested that the ratio estimator could be applied in analysis of this data. Briefly explain when the Ratio Estimation may be used in sample surveys.

(5marks).

- ii. Obtain the following estimates from the data
 - a)
 - b)
 - c) (15 marks)

QUESTION THREE(20 MARKS)

- a. Let be variance based on sample observations of . Show that under SRSWOR, where (10marks)
- b. A population consists of five members 2,3,8,11,6. Consider all possible samples of size two which can be drawn without replacement. Show that
 - i. is unbiased for

ii.

(10 marks)

QUESTION FOUR (20 MARKS)

- a. A population consists of N = 6 observations: $X_i = 3, 9, 4, 5, 6, 12$. One wishes to obtain simple random samples of size n = 4. Obtain all possible simple random samples such that $\hat{V}(\bar{x}) = \frac{N-n}{Nn}S^2$ and verify that \bar{x} is unbiased for \bar{X} (10marks)
- b. A population of forty eight observations was recorded as follows.

98	102	4 2	7 6	3 8	2 0	8 8	64	5 3	4 2	3 4	2 0
120	7 8	6 2	4 7	3 5	3 6	4 4	8 0	7 2	76	5 0	5 8
3 0	2 9	4 6	5 3	100	112	8 2	74	6 0	5 6	4 3	4 4
1 0	1 8	65	5 1	3 4	3 6	69	77	8 5	89	4 0	5 0

- i. Come up with two strata, the smaller being of size 16.
- ii. A sample size of 12 is to be used in this stratification from the entire population. Obtain and (10 marks)

QUESTION FIVE (20 MARKS)

- a) A population consists of N = 6 observations: $X_i = 3, 9, 4, 5, 6, 12$. One wishes to obtain simple random samples of size n = 4. Obtain all possible simple random samples such that $\hat{V}(\bar{x}) = \frac{N-n}{Nn}S^2$ and verify that \bar{x} is unbiased for \bar{X} (10marks)
- b) Show that stratified random sampling with proportional allocation is more efficient than SRSWOR when and are considered negligible. (10marks)