

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE/BACHELOR OF SCIENCE (ACTUARIAL SCIENCE WITH IT)

3RD YEAR 2NDSEMESTER 2016/2017 ACADEMIC YEAR MAIN CAMPUS

COURSE CODE: SMA 303

COURSE TITLE: COMPLEX ANALYSIS

EXAM VENUE: STREAM: BED SCIENCE Y3S2

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

1. Answer question one (compulsory) and any other two questions.

- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) – 30 MARKS

- a) Define each of the following terms as used in complex analysis
 - i) Argument
 - ii) Principal argument
 - iii) Limits of a complex function
 - iv) Holomorphic functions

(8 marks)

- b) Find the image of a line y = 2 under the complex mapping $w = z^2$ for $w, z \in \mathbb{C}$, hence sketch the line and its image under the mapping (4 marks)
- c) Express -1-i in exponential form using the principal argument. (2 marks)
- d) Determine the points of singularity for the function $f(z) = \frac{4z}{z^2 2z + 2}$ (4 marks)
- e) Describe all the transformations represented by a complex mapping $f(z) = \sqrt{2}iz 4 + 3i$ (4 marks)
- f) Evaluate the line integral $I = \oint_c (x^3 dx + y dy)$ where C comprises the triangle O(0,1), A(1,2) and C(0,0) (4 marks)
- g) Compute the nth root for the $(1 + \sqrt{3}i)^{\frac{1}{3}}$, hence sketch an appropriate circle indicating the roots w_0 , w_1 , and w_2 (4 marks)

QUESTION TWO (20 MARKS)

- a) Find the derivative of $\frac{iz^3 2z}{3z}$ (3 marks)
- b) Evaluate $\left(\frac{\sqrt{3}+i}{i+1}\right)^4$, giving all your answers in polar form. (6 marks)
- c) Compute the principal value of the complex logarithm $\ln z$ for z = -i (4 marks)
- d) Prove that if a complex function f(z) = u(x, y) + iv(x, y) is analytic at any point z, and in the domain D, then the Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, can be verified. (7 marks)

QUESTION THREE (20 MARKS)

a) Evaluate the integral $\oint_c \frac{z}{z^2 + 9} dz$, where *C* is the circle |z - 2i| = 4 using the Cauchy's integral formular. (5 marks)

b) Use the definition of the derivative of a complex function to determine the derivative of $f(z) = z^2 - 1$ in the region where the derivative exists.

(5 marks)

- c) Solve for w, given the complex function $e^{w} = \sqrt{2}i$ for $w \in \mathbb{C}$. (5 marks)
- d) State De-Moivre's theorem hence use it to evaluate $(\sqrt{6} 3\sqrt{2}i)^6$, giving your answer in the form a + bi, $a, b \in \mathbb{R}$ (5 marks)

QUESTION FOUR (20 MARKS)

- a) Find the value of i^i (4 marks)
- b) Show that the nth of unity are given by $\left(1\right)^{\frac{1}{n}} = \cos\frac{2k\pi}{n} i\sin\frac{2k\pi}{n}, k = 0,1,2,....(n-1)$ (6 marks)
- c) Solve the compex quadratic equation $z^{2} (1+9i)z 20 + 5i = 0$ (4 marks)
- d) State the Cauchy's integral formular for derivatives hence evaluate

$$\oint \frac{z^3 + 3}{z(z - i)^2}$$
(6 marks)

QUESTION FIVE (20 MARKS)

- a) Given the complex function f(z) = u(x, y) + iv(x, y), verify that the function $u(x, y) = x^2 + 4x y^2 + 2y$ is harmonic hence find v(x, y) the harmonic conjugate u, Hence find the corresponding analytic function f(z) = u + iv. (6 marks)
- b) Evaluate $\oint \frac{1}{z} dz$, where C is the circle $x = \cos t$, $x = \sin t$ for $0 \le t \le 2\pi$ (4 marks)
- c) Show that the function $f(z) = 3x^2y^2 6ix^2y^2$ is not analytic at any point but differentiable along the coordinate axes. (5 marks)
- d) Use L'Hopital's rule to compute

$$\lim_{z \to 1+i} \frac{z^5 + 4z}{z^2 - 2z + 2}$$
 (5 marks)