JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND
TECHNOLOGY
SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE/BACHELOR OF SCIENCE (ACTUARIAL SCIENCE WITH IT)
$3^{\text {RD }}$ YEAR $2^{\text {ND }}$ SEMESTER 2016/2017 ACADEMIC YEAR
MAIN CAMPUS

COURSE CODE: SMA 303
COURSE TITLE: COMPLEX ANALYSIS
EXAM VENUE:
STREAM: BED SCIENCE Y3S2
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question one (compulsory) and any other two questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) - 30 MARKS

a) Define each of the following terms as used in complex analysis
i) Argument
ii) Principal argument
iii) Limits of a complex function
iv) Holomorphic functions
(8 marks)
b) Find the image of a line $y=2$ under the complex mapping $w=z^{2}$ for $w, z \in \mathbf{C}$, hence sketch the line and its image under the mapping
(4 marks)
c) Express $-1-i$ in exponential form using the principal argument. marks)
d) Determine the points of singularity for the function $f(z)=\frac{4 z}{z^{2}-2 z+2}$
(4 marks)
e) Describe all the transformations represented by a complex mapping $f(z)=\sqrt{2} i z-4+3 i$
(4 marks)
f) Evaluate the line integral $I=\oint_{c}\left(x^{3} d x+y d y\right)$ where C comprises the triangle $O(0,1), A(1,2)$ and $C(0,0)$
g) Compute the $\mathrm{n}^{\text {th }}$ root for the $(1+\sqrt{3} i)^{\frac{1}{2}}$, hence sketch an appropriate circle indicating the roots w_{0}, w_{1}, and w_{2}
(4 marks)

QUESTION TWO (20 MARKS)

a) Find the derivative of $\frac{i z^{3}-2 z}{3 z}$
(3 marks)
b) Evaluate $\left(\frac{\sqrt{3}+i}{i+1}\right)^{4}$, giving all your answers in polar form.
c) Compute the principal value of the complex logarithm $\ln z$ for $z=-i$
d) Prove that if a complex function $f(z)=u(x, y)+i v(x, y)$ is analytic at any point z, and in the domain D, then the Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, can be verified.
(7 marks)

QUESTION THREE (20 MARKS)

a) Evaluate the integral $\oint_{c} \frac{z}{z^{2}+9} d z$, where C is the circle $|z-2 i|=4$ using the Cauchy's integral formular.
b) Use the definition of the derivative of a complex function to determine the derivative of $f(z)=z^{2}-1$ in the region where the derivative exists.
c) Solve for w, given the complex function $e^{w}=\sqrt{2} i$ for $w, \in \mathrm{C}$. (5 marks)
d) State De-Moivre's theorem hence use it to evaluate $(\sqrt{6}-3 \sqrt{2} i)^{6}$, giving your answer in the form $a+b i, a, b \in \mathbf{R}$
(5 marks)

QUESTION FOUR (20 MARKS)

a) Find the value of i^{i}
(4 marks)
b) Show that the $\mathrm{n}^{\text {th }}$ of unity are given by

$$
\begin{equation*}
(1)^{\frac{1}{n}}=\cos \frac{2 k \pi}{n}-i \sin \frac{2 k \pi}{n}, k=0,1,2, \ldots \ldots(n-1) \tag{6marks}
\end{equation*}
$$

c) Solve the compex quadratic equation $\quad z^{2}-(1+9 i) z-20+5 i=0$
(4 marks)
d) State the Cauchy's integral formular for derivatives hence evaluate

$$
\begin{equation*}
\oint \frac{z^{3}+3}{z(z-i)^{2}} \tag{6marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

a) Given the complex function $f(z)=u(x, y)+i v(x, y)$, verify that the function $u(x, y)=x^{2}+4 x-y^{2}+2 y$ is harmonic hence find $v(x, y)$ the harmonic conjugate u,Hence find the corresponding analytic function $f(z)=u+i v$.
(6 marks)
b) Evaluate $\oint \frac{1}{z} d z$, where C is the circle $x=\cos t, x=\sin t$ for $0 \leq t \leq 2 \pi$
c) Show that the function $f(z)=3 x^{2} y^{2}-6 i x^{2} y^{2}$ is not analytic at any point but differentiable along the coordinate axes.
(5 marks)
d) Use L'Hopital's rule to compute

$$
\begin{equation*}
\lim _{z \rightarrow+1+i} \frac{z^{5}+4 z}{z^{2}-2 z+2} \tag{5marks}
\end{equation*}
$$

