JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
 UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
 ACTUARIAL
 $1^{\text {ST }}$ YEAR $2^{\text {ND }}$ SEMESTER 2016/2017 ACADEMIC YEAR
 REGULAR (MAIN)

COURSE CODE: SMA 103
COURSE TITLE: LINEAR ALGEBRA I
EXAM VENUE:
STREAM: (BSc. Actuarial)
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

a) Given that $\boldsymbol{u}=(1,2,-4), \boldsymbol{v}=(-3,1,2)$ and $\boldsymbol{w}=(2,2,-4)$. Determine i. $\quad 2 \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$.
ii. The dot product \boldsymbol{v}. w
) Define the following terms:

i. Linearly independent vectors.

ii. Basis for a vector space.
c) Given that the vectors $\boldsymbol{u}=\binom{m}{1}$ and $\boldsymbol{v}=\binom{4}{3}$ are perpendicular. Find m. (4mks) Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -2 & 4 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right]$.
i. Find the transpose of A.
ii. Give the size of the matrices:

1) A
2) B
iii. Compute BA.
d) Given that the matrix $\left[\begin{array}{ccc}3 & 2 & 4 \\ 1 & x & 5 \\ 0 & 1 & -2\end{array}\right]$ is a singular matrix, determine the value of x. (5mks)
e) Determine whether or not the vectors $\binom{1}{2}$ and $\binom{1}{3}$ form a basis for \mathbb{R}^{2}. (5 mks)

QUESTION TWO (20 marks)

a) Determine whether the following vectors are linearly dependent or linearly independent:
i. $\{(40,15),(-50,25)\}$
(3mks)
ii. $\quad v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{c}3 \\ -2 \\ 0\end{array}\right)$
(4mks)
b) Determine characteristic polynomial, the eigenvalues and the associated eigenvectors of the matrix $\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.
c) Let V and W be two vector spaces over a field F. Define a linear map f from V to W.
(3mks)

QUESTION THREE (20 marks)

a) If $v_{1}, v_{2}, \ldots, v_{n}$ is a basis of the vector space V over a field K, then for every $v \in V$, then show that there are unique scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that

$$
\begin{equation*}
v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n} \tag{8mks}
\end{equation*}
$$

b) Find the angle between the following vectors

$$
\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
4 \\
1
\end{array}\right) \text {. }
$$

c) Use the Gauss method to solve each system and \backslash or conclude many solutions or no solution.
i.

$$
\begin{gathered}
2 x+2 y=5 \\
x-4 y=0
\end{gathered}
$$

ii.

$$
\begin{aligned}
& -x-y=1 \\
& -3 x-3 y=2
\end{aligned}
$$

QUESTION FOUR (20 marks)

a) Given that $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 0 & -1 \\ 2 & 3 & 1\end{array}\right]$, compute A^{-1}.
(8mks)
b) Use Gauss-Jordan reduction to solve the following system of linear equations

$$
\begin{gathered}
x+y+z=9 \\
2 x+4 y-3 z=1 \\
3 x+6 y-5 z=0
\end{gathered}
$$

c) Let V be a vector space over a field F.
i) Define a vector subspace U of V.
ii) Show that y -axis in \mathbb{R}^{2} is a vector subspace.

QUESTION FIVE (20 marks)

a) Determine whether the space of rational numbers is a field or not.
b) Let V be a vector space over a field F. Define a vector subspace U of V.
c) Let V be a vector space. Prove that
i) There is a unique identity element;
ii) There is a unique additive inverse for each element.

