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Abstract: Let J be the Jacobson radical of a commutative completely primary
finite ring R such that Jk 6= (0) and Jk+1 = (0). Then R/J ∼= GF (pr), the
finite field of pr elements, and the characteristic of R is pk where k ≥ 2 and p is
some prime integer. In this paper, we determine the structures of the quotient
groups 1 + J i/1 + J i+1 for every characteristic of R and 1 ≤ i ≤ k − 1.
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1. Introduction

Throughout this paper, all the rings are finite and commutative with identities,
denoted by 1 6= 0 and ring homomorphisms preserve identity. Upon consider-
ation of s, t and λ to be the number of elements in the generating sets for U ,
V and W respectively, Chikunji in [1] determined in general the structure of
1 + W of the unit group of R = R0 ⊕ U ⊕ V ⊕ W and the structure of the R∗

of R when s = 3, t = 1, λ ≥ 1 and the charR = p. Furthermore the author
generalized the solution of the cases when s = 2, t = 1; t = s(s + 1)/2 for a
fixed s, and p ≤ charR ≤ p3; and when s = 2, t = 2 and charR = p to the case
when the annihilator, ann(J) = J2 + W, so that λ ≥ 1.
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Let R be a completely primary finite ring with maximal ideal J such that
Jk+1 = (0), Jk 6= (0), k ≥ 1. Then the residue field R/J is a finite field
GF (pr), for some prime integer p and positive integer r. The characteristic of
R is pk for some positive integer k. Let R0 = GR(pkr, pk) be the Galois ring
of characteristic pk and order pkr. A concrete model is the quotient Zpk [x]/(f)
where f ∈ Zpk [x] is a monic polynomial of degree r irreducible modulo p. Then
it can be deduced from the main theorem in [2] that R has a coefficient subring
R0 of the form GR(pkr, pk) which is clearly a maximal Galois subring of R. A
trivial case is GR(pk, pk) = Zpk . We construct commutative finite rings with

unique maximal ideal J such that Jk+1 = (0) and Jk 6= (0) for the cases when
charR = p2 and charR = pk : k ≥ 3. Then we determine the structures of the
quotient groups of the rings constructed.

The following results are fundamental to the study of unit groups of the
rings to be considered in this paper.

1.1. Let R be a finite ring. Then every left unit is a right unit and every left
zero divisor is a right zero divisor. Furthermore, every element of R is either
a zero divisor or a unit (see [3]).

1.2. If a ring has two or more zero divisors (including zero), then R is a
finite ring (see [4]).

2. A Class of Finite Rings

Let R0 be the Galois ring of the form GR(pkr, pk) and let ui ∈ J , where 1 ≤
i ≤ h − 1 so that R = R0 ⊕ R0u1 ⊕ ... ⊕ R0uh−1 is an additive group. On the
additive group, define multiplication by the following relations: uiuj = 0 (1 ≤
i, j ≤ h − 1); r0ui = uir0, r0 ∈ R0; pk−1ui 6= 0. From the given definition of
multiplication in R, we see clearly that if (r0, r1, ..., rh−1) and (s0, s1, ..., sh−1)
are any two elements in R, then

(r0, r1, ..., rh−1)(s0, s1, ..., sh−1) = (r0s0, r0s1 + r1s0, ..., r0sh−1 + rh−1s0).

It is then easy to show that the given multiplication turns the additive group
into a ring.

When char R = pk, where k ∈ Z+, we determine the structures of the
quotient groups of the ring R.
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3. Quotient Groups

It is an established fact that a ring R defined by the construction in Section
2 satisfies the following property: the subset of all its zero divisors forms a
unique maximal ideal J and 1 + J is a normal subgroup of its group of units
R∗. Suppose k ≥ 2, then the ideals J , J2, J3,...,Jk and Jk+1 in R, form a chain

J ⊃ J2 ⊃ J3 ⊃ ... ⊃ Jk+1 = (0)

and consequently, the subgroups 1 +J , 1 + J2,1 + J3,...,1 + Jk, 1 + Jk+1 = {1}
forms a filtration

1 + J ⊃ 1 + J2 ⊃ 1 + J3 ⊃ ... ⊃ 1 + Jk ⊃ 1 + Jk+1 = {1}.

Let R be a ring defined in Section 2 and J be the Jacobson radical of the
ring such that for k ≥ 2, Jk 6= (0) and Jk+1 = (0).

We begin by showing that for j = 1, 2, ..., k − 1, the quotient Jj/Jj+1 is a
vector space over the quotient ring R/J.

Lemma 1. Let J be the Jacobson radical of a ring R defined in Section

2. Then the quotient Jj/Jj+1, j = 1, 2, ..., k−1 is a vector space over GF (p) ⊆
R/J .

Proof. Given that J is a maximal ideal in R, the quotient ring R/J is a field.
For every prime integer p, let Fp be a prime subfield of R/J . Let y1, y2 ∈ Jj

such that y1 + Jj+1 and y2 + Jj+1 belong to Jj/Jj+1, then for each a ∈ Fp,

a((y1 + Jj+1) + (y2 + Jj+1)) = a((y1 + y2) + Jj+1) = (a(y1 + y2)) + Jj+1 ,

which belongs to Jj/Jj+1.

Now,

| R |=| R/J | . | J/J2 | ... | Jk−1/Jk | . | Jk |

= p(1+

k−1 times
︷ ︸︸ ︷

h + ... + h+h−1)r = pkhr , h ≥ 2.

Thus R is indeed finite.

Remark. Finiteness of R implies that J is nilpotent, say Jk+1 = (0).

Notice that 1 + Jj+1 is a normal subgroup of 1 + Jj and by Lagrange’s
theorem | 1 + Jj/1 + Jj+1 |= phr, where j = 1, ..., k − 1. We now determine
the structure of 1 + Jj/1 + Jj+1 for j = 1, 2, ..., k − 1. We begin with the case,
when char R = p2.

Proposition 1. Let R be a ring defined in Section 2. Suppose J is the
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Jacobson radical of R, then for k = 2, the quotient group 1 + J/1 + J2 ∼=
Z

r
p × ... × Z

r
p

︸ ︷︷ ︸

h copies

for every prime integer p.

Proof. Let τ1, ..., τr ∈ R0 such that τ1, ..., τr ∈ R0/pR0 form a basis for
R0/pR0 regarded as a vector space over its prime subfield Fp. Consider the
element (1 + pτl)1 + J2 ∈ 1 + J/1 + J2. Then

((1 + pτl)1 + J2)p = (1 + pτl)
p1 + J2

= (1 + p2τl + ... + ppτl
p)1 + J2 = 1 + J2 since charR = p2 .

Next, consider the element (1 + τlu1)1 + J2 ∈ 1 + J/1 + J2. Then

((1 + τlu1)1 + J2)p = (1 + τlu1)
p1 + J2

= (1 + pτlu1)1 + J2 = 1 + J2 since 1 + pτlu1 ∈ 1 + J2 .

Similarly, ((1 + τlu1 + τlu2)1 + J2)p = 1 + J2. Continuing in a similar
manner up to the element (1 + τlu1 + τlu2 + ... + τluh−1)1 + J2 we obtain
((1 + τlu1 + τlu2 + ... + τluh−1)1 + J2)p = 1 + J2. For positive integers al, b1l,
b2l,...,b(h−1)l with al ≤ p, bil ≤ p where 1 ≤ i ≤ h − 1, we assert that

r∏

l=1

{(1 + pτl)1 + J2)al}.
r∏

l=1

{(1 + τlu1)1 + J2)b1l}.
r∏

l=1

{(1 + τlu1 + τlu2)

1 + J2)b2l}...
r∏

l=1

{(1 + τlu1 + τlu2 + ... + τluh−1)1 + J2)b(h−1)l} = 1 + J2

will imply al = p, bil = p for every l = 1, ..., r and 1 ≤ i ≤ h − 1. If we set

Tl = {((1 + pτl)1 + J2)a | a = 1, ..., p},

S1l = {((1 + τlu1)1 + J2)b1 | b1 = 1, ..., p},

S2l = {((1 + τlu1 + τlu2)1 + J2)b2 | c2 = 1, ..., p},

...

S(h−1)l = {((1 + τlu1 + τlu2 + ... + τluh−1)1 + J2)bh−1 | bh−1 = 1, ..., p} ,

we see that Tl, S1l, S2l,...,S(h−1)l are all cyclic subgroups of the group 1+J/1+J2

and they are of the orders indicated by their definition. Since

r∏

l=1

|< (1+ pτl)1+J2 >| .
r∏

l=1

|< 1+ τlu1 >| .
r∏

l=1

|< (1+ τlu1 + τlu2)1+J2 >|
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...

r∏

l=1

|< (1 + τlu1 + τlu2 + ... + τluh−1)1 + J2 >|= prh

and the intersection of any pair of the cyclic subgroups gives the identity group
1+J2, the product of the hr subgroups Tl, S1l, S2l,...,S(h−1)l is direct. So their
product exhausts the group 1 + J/1 + J2.

Proposition 2. Let R be a ring defined in Section 2. Suppose J is the

Jacobson radical of R, then for k ≥ 3, the quotient group 1 + Jj/1 + Jj+1 ∼=
Z

r
p × ... × Z

r
p

︸ ︷︷ ︸

h copies

for every prime integer p.

Proof. Let τ1, ..., τr ∈ R0 such that τ1, ..., τr ∈ R0/pR0 form a basis for
R0/pR0 regarded as a vector space over its prime subfield Fp.

Suppose j = 1. Then the proof is obviously the one given for Proposition
1.

Suppose j ≥ 2.

Let y ∈ R0. Consider the element (1 + pjτl + pj−1τlyu1)1 + Jj+1 ∈ 1 +
Jj/1 + Jj+1. Then

((1 + pjτl + pj−1τlyu1)1 + Jj+1)p = (1 + pjτl + pj−1τlyu1)
p1 + Jj+1

= (1 + pjτlyu1)1 + Jj+1 = 1 + Jj+1 since 1 + pjτlyu1 ∈ 1 + Jj+1 .

Next, consider the element (1+pj−1τlyu1)1+Jj+1 ∈ 1+Jj/1+Jj+1. Then

((1 + pj−1τlyu1)1 + Jj+1)p = (1 + pj−1τlyu1)
p1 + Jj+1

= (1 + pjτlyu1)1 + Jj+1 = 1 + Jj+1 since 1 + pjτlyu1 ∈ 1 + Jj+1 .

Similarly, ((1 + pj−1τlyu1 + pj−1τlyu2)1 + Jj+1)p = 1 + Jj+1. Continu-
ing in a similar manner up to the element (1 + pj−1τlyu1 + pj−1τlyu2 + ... +
pj−1τlyuh−1)1+Jj+1 we obtain ((1+pj−1τlyu1+pj−1τlyu2+...+pj−1τlyuh−1)1+
Jj+1)p = 1+Jj+1. Now, for positive integers al, b1l,...,b(h−1)l with al ≤ p, bil ≤ p
for every l = 1, ..., r and 1 ≤ i ≤ h − 1, we assert that

r∏

l=1

{(1 + pjτl + pj−1τlyu1)1 + Jj+1)al}.

r∏

l=1

{((1 + pj−1τlyu1)1 + Jj+1)b1l}

r∏

l=1

{((1 + pi−1τlyu1 + pi−1τlyu2)1 + Jj+1)b2l}...

r∏

l=1

{(1 + pj−1τlyu1 + pj−1τlyu2 + ... + pj−1τlyuh−1)1 + Jj+1)b(h−1)l}
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= 1 + Jj+1

will imply al = p, bil = p for every l = 1, ..., r and 1 ≤ i ≤ h − 1. If we set

Tl = {((1 + pjτl + pj−1τlyu1)1 + Jj+1)a | a = 1, ..., p},

S1l = {((1 + pj−1τlyu1)1 + Jj+1)b1 | b1 = 1, ..., p},

S2l = {((1 + pj−1τlyu1 + pj−1τlyu2)1 + Jj+1)b2 | b2 = 1, ..., p}

...

S(h−1)l = {((1 + pj−1τlyu1 + pj−1τlyu2 + ... + pj−1τlyuh−1)1 + Jj+1)bh−1 |

bh−1 = 1, ..., p} ,

we see that Tl, S1l, S2l,...,S(h−1)l are all cyclic subgroups of the group 1+Jj/1+
Jj+1 and they are of the orders indicated by their definition. Since

r∏

l=1

|< (1 + pjτl + pj−1τlyu1)1 + Jj+1 >| .

r∏

l=1

|< (1 + pj−1τlyu1)1 + Jj+1 >| .

r∏

l=1

|< (1 + pj−1τlyu1 + pj−1τlyu2)1 + Jj+1 >|

...
r∏

l=1

|< (1 + pj−1τlyu1 + pj−1τlyu2 + ... + pj−1τlyuh−1)1 + Jj+1 >|

= prh

and the intersection of any pair of the cyclic subgroups gives 1 + J i+1, the
product of the hr subgroups Tl, S1l, S2l,...,S(h−1)l is direct. So their product
exhausts the group 1 + Jj/1 + Jj+1.
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