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Abstract: 

The transport of solutes through porous media where chemicals undergo adsorption or change process on the surface of the poro us 

materials has been a subject of research over the years. Use of pesticides has resulted in production of diverse quantity and quality for 

the market. Disposal of excess material has also become an acute problem. The concept of adsorption is essential in det ermining the 

movement pattern of pesticides in soil in order to assess the effect of migrating chemicals from their disposal sites on the quality of 

ground water. In this paper, we derive a two dimensional equation accounting for both lateral and axial pes ticide flow in a porous 

media by convective- dispersive transport with steady state water flow. The model is derived from the first principle and solved using 

Alternation-Direct-Implicit  (ADI) method. 
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 I. INTRODUCTION 

Convective-Dispersive equations have been solved using 

implicit methods. This is due to their unconditional stability but 

the challenges associated with the matrices have become a 

concern and a limitation in obtaining solutions [1, 9]. Implicit 

fin ite difference methods obtain the solution for the next step 

from the state of both the current and the next steps, while 

explicit methods obtain the solution from the current step only. 

Implicit methods require computation per time step and can 

implement long time step intervals without suffering numerical 

instabilities. On the contrary explicit numerical methods suffer 

from instabilit ies. Implicit numerical methods are stable in one-

dimension problems but they do not guarantee stability in 

multid imensional problems. Inversion of matrices produced by 

explicit numerical are easier to solve compared to those of 

implicit numerical methods, but require smaller time interval 

thus increasing computation time. In this paper we adopt ADI 

method. In numerical analysis, the Alternating Direction 

Implicit (ADI) method is a fin ite  

 

Difference method for solving parabolic and elliptic partial 

di fferential equations.  

The advantage of the ADI method is that the equations that 

have to be solved in each step have a simpler structure and can 

be solved efficiently with the tridiagonal matrix algorithm., 

also called Thomas Alogarithm, whis is user friendly [6]  

Peaceman and Rachford [1] method is the most ideal for 2D. 

These methods blend implicit numerical methods with explicit 

numerical methods. ADI method solves the first dimension 

implicitly and the second dimension explicitly and the next step 

the first dimension explicit ly and the second dimension 

implicitly and so on. This method is unconditionally stable and 

since it applies implicit scheme to one dimension at a time, the 

non-zero terms are present only in three diagonal line matrix, 

which is simple and friendlier to solve compared to the matrix 

created by the fully implicit method [7] in 2D. Advantages of 

ADI method is that it prevents numerical problems encountered 

by the fully implicit schemes and it shortens computing time by 

a factor of 2 compared to the implicit method and does not 

encounter numerical p roblems such as negative distribution 

functions or crashes during matrix inversion [6] that are seen in 

implicit methods. 

 

II. DERIVATION OF CONVECTIVE-DISPERS IVE 

SOLUTE TRANSPORT EQUATION WITH S TEADY 

STAT WATER FLOW CONDITION 

Let the average pore water velocity be V(LT 
-1

) = 


q
 ,[5] 

i.e. 
z

H
Kq




 , is the flux density,   

s

w
V

V
, in which 

wV  is volume of water in the porous media and sV  is volume 

of solids in used instead flow medium before the flow takes 

place.  

In this paper we apply the concept of dispersion through a 

cylindrically packed soil vessel to derive the convective 

dispersive equation for pesticide adsorption in a porous media.  

(See Figure 1 below) 

 

   
Figure. 1. Cylindrically packed soil vessel 
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At very low flow rate, the dispersion is different in longitudinal 

and radial directions. The Dispersion coefficients are denoted 

by DL for longitudinal and DR fo r rad ial 

 

 D   disdiff DDV , ,                       (1.0)                                                   

 

where diffD  (L
2
T

-1
) is molecular diffusion coefficient, 

disD    (L
2
T

-1
) is the hydrodynamic dispersion and is the 

mixing or spreading of the solute during transport due to 

differences in velocit ies within a pore and between pores. The 

volumetric water content denoted by   which we can assume 

to be the void age for saturated soils. 

The element height is denoted by   . Inner radius is r and 

outer radius is rr  , C is the concentration of the material to 

be dispersed and is a function of axial position l , radial position 

r, time t and dispersion coefficients DR and DL radial and axial 

respectively. 

The rate of entry of reference material due to flow in axial 

direction is q (2 )rCr . The corresponding efflux rate is  

             q (2 )rr 












 l

l

C
C .                   (1.1)                                                                                              

The net accumulation rate in element due to flow in axial 

direction is : 

              q (2 )rr  












l

l

C
.         (1.2)    

 Rate of diffusion in axial direction across inlet boundary is: 

                             - (2 rr  ) 












l

C
DL

                     (1.3)                                   

                          

 The corresponding rate at outlet boundary is: 

 

                           rr2(  )  

















l

l

C

l

C
DL 2

2

    (1.4)                                                              

                             

The net accumulation rate due to diffusion from boundaries in 

axial d irection is: 

                               rr2(  ) l
l

C
DL 




2

2

      (1.5) 

 

Diffusion in radial direction at r is: 

                                   - rr2(  )
r

C
lDR




  .            (1.6)                                                                                                 

 

The corresponding rate at radius rr  is 

                                
  lrr   )(2

 


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
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 .                                                 (1.7)                               

 

The net accumulation rate due to diffusion from boundaries is:  

 

  lrr   .2   

  






















r

r

C

r

C
Dlrr

r

C
D RR 2

2

)()(2   .   (1.8) 

If we ignore the last term, because we are considering infinite 

small changes and that makes the second derivative negligible, 

it becomes:  

 

                

























r

C
r

r
rlDR2  .                    (1.9)                             

 

 For a representative elementary volume of soil, the total 

amount of a given chemical species X (ML
-3

) is represented by 

the sum of the amount retained by the soil matrix and the 

amount present in the soil as  

             

   CSX b                                                   (1.10) 

    where, b  is the bulky density, and S is the amount of 

solute adsorbed, 

 

Differentiating (1.10) with respect to t, yields,  

                 
t

C

t

S

t

X
b














  .                 (1.11)                                                                  

                                         

Now the total accumulation rate is: 

    
t

X
lrr



2  

                = ( lrr 2 ) 

















t
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S
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From equations (1.0) to (1.12), we have: 

            l
l
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(1.13) 

 

   Div iding through by    lrr 2 , we get 
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(1.14)                                       

 

  Taking l=x and r=y,  equation(1.14) becomes, 

                

x
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  But xV
q



 (pore water velocity), therefore equation (1.15) 

comes to 
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From the Freundlich equation, [10] 
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Putting equation (1.17) in (1.16) 
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                    (1.18) 

                                                                             (1.18) 

      where, 







 11)( NKNCCR



. 

Equation (1.18) is our model equation describing two-

dimensional movement of solute in the soil or porous media. 

 

2. SOLUTION OF THE EQUATION USING NUMERICAL METHOD 

The expanded equation (1.18) is  
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
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
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



    
The fin ite difference method is ideal for solving nonlinear 

equations. We replace the differential with its finite d ifference 

equivalent. We shall establish grids based on dimensions we 

are to consider. We use the (i, j) notation that is used to 

designate the pivot point for two-dimensional space (x, y) 

direction and (i, j) being the counters in the (x, y) d irect ions. 

The partial derivative of C with respect to x implies that t is 

kept constant and vice versa.                                                  

 

The initial condition is that the concentration of pesticide at all 

positions in the soil at t ime zero is constant and equal to Ci. 

That is C(x,0) = Ci for x > 0, C(0,y)=Cj  

 

Boundary conditions: two conditions are necessary: 

i. In the first case the concentration of the pesticides at 

the position x = 0, y=0 is specified for a period of 

time, the concentration at the surface is zero. That is  

 

                                              C (0, 0,t ) = C0  for 0<t   to  

                                                                     C (0, 0,t) = 0  for t > to 

 

ii. In the second case, the concentration of the pesticides 

in the solution entering the soil system at position x or 

y = 0 is specified for a period time. Fo llowing that 

time, the concentration at the surface is zero.  

Thus 

 

 00 0,, ttforVC   

 



 0xyx VC

y

C
D

dx

dC
D   0, for,  t>0. 

Assumptions 

i. The pore water velocity is constant in time and space. 

This condition can be met for a uniform soil if the flux 

density of water velocity and volumetric water content 

are constant for all positions all the times.  

ii. The spread of solute is dominated by hydraulic 

dispersion rather than diffusion. 

iii. The hydrodynamic d ispersion can be approximated as 

the product of the dispersivity and pour water velocity. 

iv. The adsorption process is instantaneous and reversible 

and the adsorption isotherm can be described by the 

model i.e the concentration of pesticide absorbed on 

the soil solids is proportional to the concentration in 

the solution, [8] 

 

The second order accuracy in t ime can be obtained by using the 

Crank-Nico lson Method. 

                                                                                           n+1 n+1 

  

  

 

 

 

 

                                                                                      n j+1 

                                                                                             j+1 j 

                                                                                      jj-1 

                         i-1                             i                  j-1i+1 

i-1                              i                                   i-1 

Figure.2.Grid showing second order accuracy in time  is  

Obtain using Crank Nicolson Method.      
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Using Matrix, this equation is expensive to solve. 

 

The most practical solution to this came with the development 

of Alternation-Direct-Implicit (ADI) Method by Peace man and 

Richford[1]. This consists of first treating one row implicit with 

backward Euler and reversing the roles and treating the other 

one by backward Euler. 

 

III. COMPUTATION MOLECULE   FOR THE ADI 

METHOD 
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               Figure.3.Computation Molecule for ADI Method 

 

These methods involve solving one set of linear equations for 

two dimensional systems, solve 1D equation for grid line. It 

also provides for solving by alternating direction to prevent 

bias. 
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The matrix form, for each row is,  
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The equations can be solved to avoid forward elimination and 

backward substitution. 

 

Stability analysis 

 

Using Von Neumann Analysis 
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When we combine equations (1.24) and (1.25) we get  
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Fromm’s scheme keeps track of whether the wave speed is 

positive or negative, and alters the direction of information 

transfer accordingly.  

This scheme is stable for 
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