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Abstract—The nonlinear (1+1) Sine-Gordon equation that governs the vibrations of the rigid pendula attached 

to a stretched wire is solved. The equation is discretized and solved by Finite Difference Method with specific 

initial and boundary conditions. A Crank Nicolson numerical scheme is developed with concepts of stability of 

the scheme analysed using matrix method. The resulting systems of linear algebraic equations are solved using 

Mathematica software. The solutions are presented graphically in three dimensions and interpreted. The 

numerical results obtained indicate that the amplitudes of the rigid pendula attached to a stretched wire vary 

inversely as the position of the travelling waves produced on the stretched wire. The efficacy of the proposed 

approach and the results obtained are acceptable and in good agreement with earlier studies on the rigid 

pendula attached to a stretched wire. 

Keywords—Crank Nicolson Numerical Scheme; Finite Difference Method; Pendula Attached to a Stretched 

Wire; Sine-Gordon Equation. 

Abbreviations—Crank Nicolson Scheme (CNS); Differential Transform Method (DTM); Discrete Singular 

Convolution (DSC); Forward Difference Scheme (FDS); Modified Variation Iteration Method (MVIM); Partial 

Differential Equation (PDE); Sine-Gordon Equation (SG). 

 

I. INTRODUCTION 

INE-GORDON Equation was originally considered in 

the nineteenth century in the course of study of 

surfaces of constant negative curvatures [Purring & 

Skyrme, 4]. This equation attracted a lot of attention in 1970s 

due to the presence of solitons solution.This equation which 

arises in the study of differential geometry of surfaces with 

Gaussian curvature, has wide applications in the propagation 

of fluxon in Josephson Junctions (a junction between two 

superconductors) [Sirendaoreji & Jiong, 17],the motion of 

rigid pendula attached to a stretched wire [Purring & Skyrme, 

4], solid state physics, nonlinear optics, stability of fluid 

motions, dislocations in crystals [Purring & Skyrme, 4] and 

other scientific fields.The Sine-Gordon equation is one of the 

most important equations of nonlinear physics and describes 

many physical applications, one of them being periodic 

pendulum problem. Most of the research on the periodic 

pendulum suggests that the period of swing depends on 

length and the local strength of gravity if amplitude is limited 

to small swings. In an ideal situation, where friction plays no 

part, an object would continue to oscillate with constant 

amplitude indefinitely. Objects in the real world do not 

experience perpetual oscillation; instead, they are subject to 

damping, or the dissipation of energy, primarily as a result of 

friction. If damping effect is small, the amplitude will 

gradually decrease as the object continues to oscillate, until 

eventually oscillation ceases. 

The Sine-Gordon Equation we consider is of the form; 

sin 0u u utt xx    (1) 

Equation (1) is solved subject to; 

Initial conditions  ,0 0u x  ,  ,0 0tu x   (2) 

Boundary conditions (0, ) 1 tu t e  ,  , 0,u M t   0t  (3) 

Where 𝑀 is the largest position value of the wave 

considered in this work.In the case of mechanical 

transmission line, u(x, t) describes amplitude of the wave 

particles at position 𝑥 and time 𝑡. A wave is the result of a 

disturbance moving through a medium such as water, air, or a 
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crowd of people. As the disturbance is transferred from one 

part of the medium to another, we are able to observe the 

location of the disturbance as it moves with speed in a 

particular direction. Any quantitative measurement or feature 

of the medium which clearly identifies the location and 

velocity of the disturbance is called a signal. The signal may 

distort; however, as long as it remains recognizable, it can be 

used to identify the motion of the disturbance. A wave is any 

recognizable signal that is transferred from one part of the 

medium to another with recognizable velocity of propagation. 

One-dimension waves are represented mathematically by 

functions of two variables  txu , , where u represents the value 

of some quantitative measurement made at every position x  

in the medium at time 𝑡 [Roger Knobel, 16]. 

 
Figure 1: Pendula Attached to a Stretched Wire with Arrow 

Showing Increasing Wave Position x 

The set up in “Figure 1” consists of a series of pendula 

attached to a stretched horizontal wire and hanging vertically 

on thin strings. Each pendulum is free to swing in a plane 

perpendicular to a stretched wire. The interactions between 

adjacent pendula permits a disturbance in one part of the set 

up to propagate and mechanically transmit a signal along the 

line of pendula. If a pendulum at one end of the set up is 

disturbed slightly, the transmitted disturbance results in a 

small “wavy” motion along a stretched wire. 

II. LITERATURE REVIEW 

Broad classes of analytical and numerical solution methods 

have been presented to study the different solutions and 

physical phenomena related to Sine-Gordon Equation due to 

its wide applications and important mathematical properties. 

Wei [21] explored the utility of a discrete singular 

convolution algorithm for the integration of the Sine-Gordon 

Equation. The initial values were chosen close to a 

homoclinic manifold. The form of Sine-Gordon equation 

solved is; 

   
 

2 2

2 2

, ,
sin[ , ] 0

u x t u x t
u x t

t x

 
  

 
 (4) 

A number of new initial values were considered, 

including a case where the initial value is “exactly” on the 

homoclinic orbit subject to initial condition values are given 

as; 

  00, xu ,    xhxut sec40,    (5) 

The analytical solution obtained representing a breather-

kink and ant-kink transition associated with double point in 

the nonlinear spectrum of Equation (5) is 

   1, 4 tan secu x t h x t     , x   (6) 

Minzoni et al., [11] considered evolution lump and ring 

solutions of Sine-Gordon Equation in two-space dimensions. 

Approximate equations governing this evolution were derived 

using a pulse or ring with variable parameters in an averaged 

Lagrangian for the Sine-Gordon Equation. The Sine-Gordon 

considered was; 

 
2

2

2 2

1
sin 0,

u
u u

t


  

 
 (7) 

where є is a variable parameter in an averaged Lagrangian. It 

was shown that the initial conditions for the lump with wavy 

boundaries for the Sine-Gordon Equation eventually 

collapsed due to the shedding of angular momentum into 

dispersive radiation both asymptotically and numerically. 

Rodolfo R. Rosales [15] derived the nonlinear wave equation 

(Sine-Gordon Equation) for torsion coupled pendulums using 

the continuum modelling techniques. Only gravity and 

torsion forces induced on the axle was considered when the 

pendulums are not all aligned. The nonlinear wave equation 

(the “Sine-Gordon Equation”); obtained (for the continuum 

limit) is 

 sin22  xxtt c  (8) 

where 𝜔 =  
𝐾

𝐿
 is the pendulum angular frequency, and 

𝑐 =  
𝐾

𝜌𝐿2
 is a wave propagation speed, g the acceration due to 

gravity, 𝐾 a constant depending on axle material, 𝐿 the 

distance of attached mass from centre of mass and 𝜌 is the 

mass density along the rod. He solved the equation using 

“Pseudo-spectral” Numerical Method and showed that the 

particle-like solutions obtained preserve their identities and 

original velocities. Bobenko et al., [1] developed a numerical 

scheme for solution of the Goursat problem for a class of 

nonlinear hyperbolic systems with an arbitrary number of 

independent variables. The results were applied to hyperbolic 

systems of differential–geometric origin, like the Sine–

Gordon Equation describing the surfaces of the constant 

negative Gaussian curvature (K–surfaces). The construction 

was illustrated by the well–known Sine-Gordon Equation 

namely; 

 sin yx  (9) 

A naive Discretisation of the Sine-Gordon Equation was 

obtained from (9) by replacing partial derivatives with their 

difference analogs: 

sinx y      (10) 

where є is the lattice coordinate mesh–size for discrete K–

surfaces. The converging results were proved for an 

integrable Discretisation of the Sine–Gordon Equation 

applied to discrete K–surfaces and their Backlund 

transformations. Anton Belyakov & Alexander P. Seyranian 

[2] studied the pendulum with periodically varying lengths 

treated as a simple model of a child’s swing. The asymptotic 

expressions for boundaries of instability domains near 

resonance frequencies were derived. The domains for 
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oscillations motions were found analytically and compared 

with numerical study results. Wazzan & Ismail [20] used 

Petrov-Galerkin method to derive a scheme for the K (2.2) 

equation, where cubic B-spines are chosen as test functions 

and linear functions as trial functions. Product approximation 

technique was applied for the nonlinear terms. A Crank-

Nicolson Scheme was used to discretize in time. The system 

was solved by Newton's method and linearization technique. 

The K (2.2) equation is given by; 

   2 2 0t
x xxx

u u u    (11) 

with initial and boundary conditions given by; 

   , 0u x f x ,    ,tu x t g x  (12) 

Syed Tausesef Mohyud-Din et al., [18] applied the 

Modified Variation Iteration Method which was formulated 

by the elegant coupling of Adomian’s polynomials and the 

correctional functional for solving Sine-Gordon Equations. 

The standard form of such equations is given by 

   2, , sin 0tt xxu x t c u x t u    (13) 

with initial conditions 

   xftxu , ,  xgut   (14) 

A series of solutions of Equation (14) were obtained 

using various initial and boundary conditions. The method 

applied a direct way without using linearization, 

transformation, perturbation, discretization or restrictive 

assumptions. The solutions given consist of implicit functions 

without physical interpretation. Nimmo & Schief [13] found 

superposition principles, linear and nonlinear, associated with 

the Moutard transformation. For an integrable discrete 

nonlinear and its associated linear system, it was shown that 

in a particular form, this system was an integrable 

discretization. The of a (2+1)-dimensional Sine-Gordon 

system. The Solutions of discrete nonlinear systems were 

constructed by means of a discrete analogue of the Moutard 

transformation. Taking 𝑥 = 𝑚ℎ and 𝑡 = 𝑛𝑘, for small ℎ and 

𝑘 they got; 

   sin sin ;xthku hk u O hk   (15) 

This leads to order 𝑢 satisfying the Sine-Gordon 

Equation; 

uuxt sin  (16) 

Where the discrete variables 𝑛 and 𝑚 are viewed as true 

discrete versions of the continuous variables 𝑥 and 𝑡 in the 

Sine-Gordon Equation, and there are solutions of the discrete 

equation that are closely related to the well-known kink 

solutions of the continuous one. Houde Han & Zhiwen Zhang 

[3] studied the numerical solution of the two-dimensional 

Sine-Gordon Equation. The Split local artificial boundary 

conditions were obtained by the operator splitting method. 

Then the original problem was reduced to an initial boundary 

value problem on a bounded computational domain, which 

was solved by the FDM. The initial value problem of the two-

dimensional Sine-Gordon Equation considered is given by 

the problem; 

 
2 2 2

2 2 2
sin 0,

u u u
u

t x y

  
   

  
 

1, yx , t.>0 (17) 

u │  yxot ,0 
, 

tu │  yxt ,10 
, 1, yx  t.>0

 

(18) 

where u = u(x, y, t) represents the wave displacement at 

position (x, y) and at time 𝑡,  yxo , ,  yx,1  are the initial 

displacement and velocity respectively, and sin (u) is a 

nonlinear force term. Soliton solution to the Sine-Gordon 

Equation (18) was obtained. Lin Jin [10] considered the 

initial value problem for the Sine-Gordon Equation by using 

the Homotopy perturbation method. Based upon the 

Homotopy perturbation method, a small parameter was 

introduced and Taylor series expansion used to modify the 

method. The modified method provided a new analytical 

approach to solve the initial value problem of Equation (17) 

subject to the initial conditions 

   xgtxu o 1,      xgtxu ot 2,   (19) 

The Analytical and approximate solutions obtained are of 

implicit functions without physical interpretations. Jung [5] 

gave a numerical study on the spectral methods and the high 

order WENO Finite Difference Scheme for the solution of 

linear and nonlinear hyperbolic Partial Differential Equations 

with stationary and non-stationary singular sources. The 

results were compared with those computed by the second 

order FDM. They solved a non-linear scalar P.D.E with a 

stationary singular source namely; the Sine-Gordon Equation 

with a disordered media possessing a point-like defect. The 

defect was modeled as a 𝛿-function which is a source term in 

the equation; 

   sin , , 0tt xxu u u p u x t         (20) 

where 𝑝(𝑢) is the potential term due to the defect described 

as 𝑝 𝑢 =∈ 𝛿(𝑥)sin⁡(𝑢). The non-zero constant ∈ is the 

measure of the strength of the defect. The Sine-Gordon 

Equation was found to be integrable with the existence of a 

soliton solution, known as the kink solution. Jafar Biazar & 

Wai Sun Don [6] applied Differential Transform Method 

(DTM) based on Taylor series expansion to the Sine-Gordon 

Equation; 

     2, , sin , 0tt xxu x t c u x t u x t    (21) 

Subject to initial conditions in Equation (21). He 

obtained a series of solution with use of various conditions. 

Macías-Díaz & Jerez-Galiano [8] presented two numerical 

methods to approximate solutions of systems of dissipative 

Sine-Gordon Equations that arise in the study of one 

dimensional, semi-infinite arrays of Josephson junctions 

coupled through superconducting wires. The schemes for the 

total energy of such systems in association with the Finite 

Difference Schemes were used to approximate the solutions. 

The methods were employed in the estimation of the 

threshold at which nonlinear supratransmission takes place, in 

the presence of parameters such as internal and external 

damping, generalized mass and generalized Josephson 

current. The Finite Difference Method which is use, was first 

developed as “the method of squares” by Thom Apelt [19] in 

the 1920s, and was used to solve nonlinear hydrodynamic 
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equations. The technique is based upon the approximations 

that permit replacement of differential equations by Finite 

Difference Equation. These Finite Difference approximations 

are algebraic in form, and the solutions are related to grid 

points. Much of the work of Finite Difference Schemes has 

been presented in Jain [7], Morton & Mayers [12] and 

Rahman [14]. The methods that have been discussed by these 

authors include The Schmidt, Leap Frog, Du Fort and 

Frankel, Lax Friedrich’s, Crank Nicholson and Douglas. The 

Schmidt, Leap Frog, Du Fort and Frankel methods are 

explicit in nature and The Crank Nicholson and Douglas 

methods are implicit. We develop Crank Nicholson Scheme 

in our work. In Lin Jin [10], more advanced Finite Difference 

Method due to Lax Friedrich was discussed. The Von 

Neumann and Matrix methods of ascertaining stability in 

Finite Difference Schemes are also discussed.Matrix method 

is used to analyse stability of our scheme. 

III. NUMERICAL SCHEME AND STABILITY 

ANALYSIS 

The equation (1) is discretized to come up with Crank-

Nicholson Scheme (CNS) 

3.1. Crank-Nicholson Scheme (CNS) 

In this scheme, we replace ttu  by the central difference 

approximation, xxu  by the average of the jth level and the 

(j+1)th level central differences and xtu  by the Forward-

central difference as follows to obtain 

, 1 , , 1 1, 1 , 1 1, 1 1, , 1,

2 2 2

1, 1 1, 1 1, 1 1, 1

2 2 2

2 2

0
4

i j i j i j i j i j i j i j i j i j

i j i j i j i j

U U U U U U U U U

k h h

U U U U

hk

        

       

      
   
 

  


 
(22) 

Let 
2

2

h

k
  and

h

k
 , multiplying (21) by 24k , the 

scheme becomes 

       , 1 1, 1 1, 1 1, , , 1 , 1 1

1, 1 1,

4 4 2 2 2 4 8 4

2

i j i j i j i j i j i j i j

i j i j

U U U U U U U

U U

       

 

        

  

          

 
 (23) 

This is for    .1,2......,.........3,2,1  NNi  where N is 

number of divisions along the x-axis 

3.2. Stability Analysis of Crank Nicolson Scheme 

We use also the matrix method to analyze stability of the 

scheme (23) 

Expanding this scheme by taking 

   .1,2......,.........3,2,1  NNi , we get the system of algebraic 

equations 

       

jj

jjjjjjj

UU

UUUUUUU

,01,0

121,1,1,21,01,21,1

2

48422244













       

jj

jjjjjjj

UU

UUUUUUU

,11,1

131,2,2,3111312

2

48422244













       

jj

jjjjjjj

UU

UUUUUUU

,21,2

11,41,3,3,41,21,413

2

48422244













 

: 

: 

       2, 1 1, 1 3, 1 1, 2, 2, 1

1 1 3, 1 3,

4 4 2 2 2 4 8 4

2

N j N j N j N j N j N j

N j N j N j

U U U U U U

U U U

      

  

         

    

         

  

       1, 1 , 1 2, 1 , 1, 1, 1

, 1 2, 1 2,

4 4 2 2 2 4 8 4

2

N j N j N j N j N j N j

N j N j N j

U U U U U U

U U U

      

  

       

   

         

  
 

Writing the algebraic equations in matrix form 

   
     

   
     

   

   

   

1

2, 11

1, 0, 1 0, 1

2, 1

2, 1

2, 11,

2 24 8 2 ... 0 0

02 4 8 2 0 0

2 2

00 0 2 4 8 2

2 20 0 2 4 8
N j

j j j

j

N j

N jN j

U U U

U

U

U UU

     

    

   

    

     



 

 



 

 

       
   

       
      
   

       
                 

   



=

1,

2,

2,

1,

8 0 ... 0 0

0 8 0 0 0

0 0

0 0 0 8 0

0 0 0 8

j

j

N j

N j

U

U

U

U





  
  
  
  
  
  
  

   

  


 

The system can be written compactly as

   
1

2 4 4 8j jG I U U e  


      


, where I is an identity 

matrix of order    N I N I   , e


 is a constant vector with 

0 1 0 0

1 0 1 0 0

1 1

0 0 1 0 1

0 0 1 0

G

 
 
  
   
 

  
  



  



, e


=

   

   
2, 1

0, 1 0, 1

2, 1

2 2

0

0

2 2
N j

j j

N j

U U

U U

   

   
 

 

 

   
 
 
 
 
 
 

    



 

 

Therefore 1jU  =    
1

2 4 4 8 jG I I U f  


       


,

  


1j jU HU f ,
 

where

f =     

1

2 4 4G I  


   
  ,     

1
2 4 4 8H G I I  


        

 

Eigen value of 𝐺 = 0 + 2.  1
cos m

m



=2  1
cos m

m



=2-4

 2

1
sin cos m

m



 

Eigen value of H=

  2

8
1

8 2 4 4 2 sin
14

m
   


 

     
 

 

For
 

0    which is the stability criterion condition. 

IV. NUMERICAL SOLUTIONS 

The numerical solutions for equation (1) are found by 

developing system of linear algebraic equations and solving 

their corresponding matrix equations. 

4.1. Crank Nicolson Scheme (Case 1, t=0.25) 

From the CNS (Equation 23), we fix  1 0.25j t   and

1,2........................13i  , we get the system of algebraic 

equations 

i=1: 8U1,2-U2,2-3U0,2 = 2U0,1+4U1,1+2U2,1-4U1,0+U2, 0-U0,0  

i=2: 8U2,2 -U3,2 -3U1,2 = 2U1,1+4U3,1+2U1,1- 4U2,0 +U3,0 -U1,0  
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i=3: 8U3, 2 -U4,2 -3U2,2 = 2U2,1 +4U4,1+ 2U1,1 -4U3,0 +U4, 0-U2,0  

i=4: 8U4,2 -U5,2 -3U3,2 = 2U3,1 +4U5,1+2U1,1 -U4,0 +U5,0 -U2,0  

i=5: 8U5,2 -U6,2 -3U4,2 = 2U4,1 +4U6,1+2U1,1-4U5,0 +U6,0 - U4,0  

i=6: 8U6,2 -U7,2 -3U5,2 = 2U5,1+4U7,1+2U1,1 -4U6,0+U7,0 -U5,0  

i=7: 8U7,2 -U8,2 -3U6,2 = 2U6,1+4U8,1+2U1,1 -4U7,0 +U8,0 -U6,0  

i=8: 8U8,2 -U9,2-3U7,2 = 2U7,1+4U9,1+2U1,1- 4U8,0+U9,0-U7,0  

i=9: 8U9,2-U10,2 -3U8,2 = 2U8,1+4U10,1+2U1,1-4U9,0+U10,0 -U8,0  

i=10: 8U10,2 -U11,2-3U9,2= 2U9,1+4U11,1+2U1,1 -4U10,0+U11,0-

U9,0  

i=11: 8U11,2 -U12,2 -3U10,2 = 2U10,1+4U12,1+2U1,1 -4U11,0+U12,0-

U10,0  

i=12: 8U12,2 -U13,2 -3U11,2 = 2U11,1+4U13,1+2U1,1-4U12,0 +U13,0 -

U11,0  

i=13: 8U13,2 -U14,2-3U12,2= 2U12,1+4U14,1+2U1,1-4U13,0+U14,0-

U12,0 

This can be written in matrix form as 


 

  


 

 

 

 

 

 

 

 

 



8 1 0 0 0 0 0 0 0 0 0 0 0

3 8 1 0 0 0 0 0 0 0 0 0 0

0 3 8 1 0 0 0 0 0 0 0 0 0

0 0 3 8 1 0 0 0 0 0 0 0 0

0 0 0 3 8 1 0 0 0 0 0 0 0

0 0 0 0 3 8 1 0 0 0 0 0 0

0 0 0 0 0 3 8 1 0 0 0 0 0

0 0 0 0 0 0 3 8 1 0 0 0 0

0 0 0 0 0 0 0 3 8 1 0 0 0

0 0 0 0 0 0 0 0 3 8 1 0 0

0 0 0 0 0 0 0 0 0 3 8 1 0

0 0 0 0 0 0 0 0 0 0 3 8 1

0 0 0 0 0 0 0 0 0 0 0 3 8

   
   
   
   
   
   
    
    
    
    
    
    
    
    
    
    
    
    
    

       

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

9,2

10,2

11,2

12,2

13,2

1.93308453

0

0

0

0

0

0

0

0

0

0

0

0

U

U

U

U

U

U

U

U

U

U

U

U

U

 

Using Mathematica the solutions are; U1,2=0.2541676, 

U2,2=0.1002561, U3,2=0.03954588, U4,2=0.01559882, 

U5,2=0.006152936, U6,2=0.002427018; U7,2=0.000957334, 

U8,2=0.0003776192, U9,2=0.0001489514, 

U10,2=0.00005875327, U11, 2=0.00002317209, 

U12,2=0.0000091168866, U13, 2=0.000003418832. 

4.2. Crank Nicolson Scheme (Case 2, t=0.5) 

Similarly for 2j   and 1,2.......13i  .This can be written in 

matrix form as 


 

  


 

 

 

 

 

 

 

 

 



8 1 0 0 0 0 0 0 0 0 0 0 0

3 8 1 0 0 0 0 0 0 0 0 0 0

0 3 8 1 0 0 0 0 0 0 0 0 0

0 0 3 8 1 0 0 0 0 0 0 0 0

0 0 0 3 8 1 0 0 0 0 0 0 0

0 0 0 0 3 8 1 0 0 0 0 0 0

0 0 0 0 0 3 8 1 0 0 0 0 0

0 0 0 0 0 0 3 8 1 0 0 0 0

0 0 0 0 0 0 0 3 8 1 0 0 0

0 0 0 0 0 0 0 0 3 8 1 0 0

0 0 0 0 0 0 0 0 0 3 8 1 0

0 0 0 0 0 0 0 0 0 0 3 8 1

0 0 0 0 0 0 0 0 0 0 0 3 8

 
 
 
 
 
 
  
  
  
   
  
  
  
  
  
  
  
  
  

     

1,3

2,3

3,3

4,3

5,3

6,3

7,3

8,3

9,3

10,3

11,3

12,3

13,3

4.3072732

0.98845136

0.38989336

0.15379291

0.09186106

0.02392861

0.00943

U

U

U

U

U

U

U

U

U

U

U

U

U

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

861

0.00372305

0.00146855

0.00057926

0.00022843

0.00008965

0.00003191

 

Using Mathematica the solutions are; U1,3=0.5843568, 

U2,3=0.3675817, U3,3=0.1991315, U4,3=0.1004137, 

U5,3=0.052122539, U6,3=0.02387797, U7,3=0.01072753, 

U8,3=0.004747756, U9,3=0.002076396, U10,3=0.0008993491, 

U11,3=0.0003863453, U12,3=0.0001642852, 

U13,3=0.0000655957. 

 

 

4.3. Crank Nicolson Scheme (Case 3, t=0.75) 

Similarly for 3j  and 1,2.......13i   

This can be written in matrix form as 


 

  


 

 

 

 

 

 

 

 

 



8 1 0 0 0 0 0 0 0 0 0 0 0

3 8 1 0 0 0 0 0 0 0 0 0 0

0 3 8 1 0 0 0 0 0 0 0 0 0

0 0 3 8 1 0 0 0 0 0 0 0 0

0 0 0 3 8 1 0 0 0 0 0 0 0

0 0 0 0 3 8 1 0 0 0 0 0 0

0 0 0 0 0 3 8 1 0 0 0 0 0

0 0 0 0 0 0 3 8 1 0 0 0 0

0 0 0 0 0 0 0 3 8 1 0 0 0

0 0 0 0 0 0 0 0 3 8 1 0 0

0 0 0 0 0 0 0 0 0 3 8 1 0

0 0 0 0 0 0 0 0 0 0 3 8 1

0 0 0 0 0 0 0 0 0 0 0 3 8

 
 
 
 
 
 
  
  
  
   
  
  
  
  
  
  
  
  
  

     

1,4

2,4

3,4

4,4

5,4

6,4

7,4

8,4

9,4

10,4

11,4

12,4

13,4

5.56444123

2.42165728

1.48967600

0.80837464

0.41928992

0.19140465

0.0942

U

U

U

U

U

U

U

U

U

U

U

U

U

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

8284

0.04228002

0.01868512

0.00816209

0.00353033

0.00144858

0.00056816

 

Using Mathematica the solutions are; U1,4=0.7771392, 

U2,4=0.6526721, U3,4=0.4683018, U4,4=0.2987221, 

U5,4=0.1764967, U6,4=0.0965173, U7,4=0.05124369, 

U8,4=0.0261148, U9, 4=0.0129073, U10,4=0.006228868, 

U11,4=0.002946961, U12,4=0.001358752, U13,4=0.0005805519. 

Table 1: Summary for Values of 𝑈𝑖,𝑗  for Crank Nicolson Difference 

Scheme cases 1, 2, 3 

 t0=0 t1=0.25(case1) t2=0.50(case2) t3=0.75(case3) 

X0=0.00 0 0.24740395 0.479425538 0.841470984 

X1=0.25 0 0.2541676 0.5843568 0.7771392 

X2=0.50 0 0.1002561 0.3675817 0.6526721 

X3=0.75 0 0.03954588 0.1991315 0.4683018 

X4=1.00 0 0.01559882 0.1004137 0.2987221 

X5=1.25 0 0.006152936 0.05212262 0.1764967 

X6=1.50 0 0.002427018 0.02387797 0.0965173 

X7=1.75 0 0.000957334 0.010727553 0.05124369 

X8=2.00 0 0.0003776192 0.004747756 0.0261148 

X9=2.25 0 0.0001489514 0.002076396 0.0129073 

X10=2.50 0 0.00005875327 0.0008993491 0.006228868 

X11=2.75 0 0.00002317209 0.0003863453 0.002946961 

X12=3.00 0 0.000009116886 0.0001642852 0.001358752 

X13=3.25 0 0.000003418832 0.0000655957 0.0005805519 

 

Figure 2: Graphical Presentation for CNS results with 
1
4

h k   

4.4. Crank Nicolson Scheme (Case 4, for t=0.2, 0.4 and 

0.6) 

From the CNS (23).We fix  1,2.....3 0.2,0.4,0.6j t   and

1,2........13i  . Using Mathematica (as in cases 1,2 and 3 

above), the results are as shown in table 2. 
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Table 2: Summary for Values of 𝑈𝑖,𝑗  for Crank Nicolson Scheme 

[Case 4, (t=0.2, 0.4, 0.6)] 

 t0=0 t1=0.2(case4) t2=0.4(case4) t3=0.6(case4) 

X0=0.0 0 0.19866933 0.389418342 0.564642473 

X1=0.2 0 0.2058488 0.43681 0.6236607 

X2=0.4 0 0.0811968 0.2345961 0.6231907 

X3=0.6 0 0.03202797 01363259 0.3822238 

X4=0.8 0 0.01263339 0.07104636 0.2283048 

X5=1.0 0 0.004983226 0.03483738 0.1308336 

X6=1.2 0 0.001965627 0.01642903 0.07805445 

X7=1.4 0 0.0007753391 0.00754048 0.0398877 

X8=1.6 0 0.0003058315 0.00339247 0.01989448 

X9=1.8 0 0.0001206348 0.001503049 0.0097138 

X10=2.0 0 0.00004758392 0.0006576145 0.00465539 

X11=2.2 0 0.00001876693 0.000282648 0.002192067 

X12=2.4 0 0.0000007383712 0.0001166303 0.0010132 

X13=2.6 0 0.0000007268892 0.00004405888 0.0004309062 

 

Figure 3: Graphical Presentation for CNS results with 1
5

h k   

V. CONCLUSION AND RECOMMENDATIONS 

5.1. Discussion 

From the graphical presentations of the solutions, it can be 

observed that, 

 the surface of the plot is not smooth because the 

differential equation is satisfied only at a selected 

number of discrete nodes within the region of 

integration 

 for a given value of 𝑡, 𝑈𝑖,𝑗  decreases to nearly zero 

as 𝑥 tends to infinity 

 the smaller the mesh sizes, the more finely the result 

values for CNS 

Simple harmonic motion occurs when a particle or object 

moves back and forth within a stable equilibrium position 

under the influence of a restoring force proportional to its 

displacement. In an ideal situation, where friction plays no 

part, an object would continue to oscillate indefinitely. 

Objects in the real world do not experience perpetual 

oscillation; instead, they are subject to damping, or the 

dissipation of energy, primarily as a result of friction. If 

damping effect is small, the amplitude will gradually 

decrease as the object continues to oscillate, until eventually 

oscillation ceases. Our results from the numerical scheme 

(CNS) for the two cases are confirming this since the 

displacement of the wave particles given by 𝑢(𝑥, 𝑡) is 

decreasing with an increase in position 𝑥 from the source 

(point of wave disturbance) and increases with increase in 

time 𝑡 of the wave.  

5.2. Conclusion 

This study focused on nonlinear Sine-Gordon Equation. A 

numerical scheme namely Crank Nicolson Schemes was 

developed and used in this study. It was found out that the 

scheme is conditionally stable. This conditional stability was 

restricted to the mesh size ℎ = 𝑘 with the limits on the values 

of 𝑥 as 0 ≤ 𝑥 ≤ 3.25 for case 1 and 0 ≤ 𝑥 ≤ 2.6 for case 2. 

We have managed to come up with the numerical 

solutions to the Equation (1) under study and the results 

interpreted with the physical application to the rigid pendula 

attached to a stretched wire. 
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