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Abstract: Modeling of some physical phenomena and technological processes taking into account dissipation leads to the Sine-Gordon 
equation with the first time derivative. The (2+1) Sine-Gordon equation with the first time derivative is used in explaining a number of 
physical phenomena including the propagation of fluxons in Josephson junctions. This study uses Finite Difference Method to solve 
(2+1) dimensional Sine-Gordon equation with the first time derivative that models dissipation of the current flow through the long 
Josephson junction. An Alternating Direction Implicit numerical scheme for the equation is developed with concepts of stability tested 
using Matrix Method. The value of surface damping parameter used are β=1.1µΩ, β =3.7 µΩ, β=7.2 µΩ and β=9.3 µΩ for Alluminium 
(Al), Tin (Sn), Lead (Pb), and Niobium (Nb) respectively. The numerical results obtained are presented in tables and graphs. The 
computational results obtained indicate that as the length of long Josephson junction increases, the current flowing through the long 
Josephson junction decreases to zero. The results also indicate that when the surface damping parameter increases, the current flowing 
through the long Josephson junction also increases.  

Keywords: Alternating Direction implicit Scheme, Finite Difference Method, Sine-Gordon Equation, Matrix Method, and Stability 
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1. Introduction 

The Sine–Gordon equation appears in the propagation of
fluxons in Josephson junctions, dislocations in crystals, solid 
state physics, nonlinear optics, stability of fluid motions and 
the motion of a rigid pendulum attached to a stretched wire, 
see [6, 21, 26, 28]. Josephson junction model [21] consists 
of two superconducting layers separated by isolated barriers. 
According to [7], the (2+1) dimensional sine-Gordon
equation with first time derivative that governs current
vibration flow through Josephson junction is given by;

2 2 2

2 2 2 22 2

1 1 sin
J

u u u u u
tx y tC C





   
   
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                   (1)

where u = u(x,y) represents the current flow at position (x,y) 
and at time t along Josephson junction c is the Swihart 
velocity (velocity of the electron), J is the Josephson 
penetration depth. The parameter  is known as surface 
damping parameter (measure of resistance of
superconductors), which is supposed to be a real number 
with 0  . This model of the two-dimensional damped 
sine-Gordon equation has various applications in physics, 
electronics etc. Methods of solving the Sine-Gordon 
equation have been the focus of many recent research works. 
Drazin [19] discusses the stability of the finite difference 
schemes for solving the nonlinear Klein-Gordon equation. 

Olusola and Emmanuel [24] employed the Reduced 
Differential Transform Method (RDTM) to obtain solutions 
to the (2+1) SG equation. The approximate solution for the 
equation converges to solution of Adomian Decomposition 
when compared. They showed that the results for the two 
methods had closeness between them. Aero [3] used a 
method proposed by Lamb for solving the two-dimensional 
SGE.The method was extended to the generalized (3+1)-
dimensional SGE to model some physical phenomena and 
technological processes taking into account dissipation 
leading to the sine-Gordon equation with the first time 
derivative;. The proposed Lamp approach transforms the 
problem of integration of the classical SGE and its 
generalizations to searching of unknown functions from the 
system of algebraic equations. A particular solution was 
found satisfying the definite initial and boundary conditions. 
The approach supposes natural generalization in the case of
integration of the equation considered in the space of any 
number of dimensions giving a solution of sinh-Gordon 
equation. Abdul-Majid [1] examined for (1+1), (2+1) and 
(3+1) dimension multiple soliton solutions of SGE using the 
simplified form of the Hirota's analytic method. One and two 
soliton solutions were obtained for the higher dimension 
SGE. Paul [25] considered the (1+1), (2+1) and (3+1) 
dimensional cases of sine-Gordon equation. He solved the 
equations numerically using the Discrete Fourier Transform 
(DFT) and leapfrog method to approximate the second 
derivative in time with a central difference. A numerical 
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solution with a stationary moving and colliding breathers 
were constructed based on Dirichlet’s boundary conditions. 
The given equations were decomposed into a system of
equations and the modified cubic B-spline basis functions 
used for spatial variable and their derivatives, which resulted 
in a system of ordinary differential equations. The resulting 
systems of equations were subsequently solved by SSP-
RK54 scheme giving 1D, 2D and 3D pulse breather solution. 

Guo et al. [20] proposed two different difference schemes, 
namely, explicit and implicit schemes. Christiansen and 
Lomdahl [12] used a generalized leapfrog method for the 
numerical computation of two-dimensional undamped SGE 
while a finite elements method was used by Argyris et al. 
[20]. Both methods were successfully applied using the 
appropriate initial conditions with the latter one gave slightly 
more accurate results. Xin [29] modeled light bullets with 
two-dimensional sine–Gordon equation. Light bullets 
contain only a few electromagnetic oscillations under their 
envelopes and propagate long distances without essentially 
changing shapes. Author of [29] performed a modulation 
analysis and observed that the sine-Gordon pulse envelopes 
undergo focusing–defocusing cycles. The evolution of lump 
and ring solitions of the two dimensional sine-Gordon 
equation and the evolution of standing and travelling 
breather-type waves are studied in Minzoni et al. [22, 23].
Morever, lump and ring solitions can be applied to the Baby 
Skyrme model and to study the vortex models [22].  

Sheng et al [27] used a split cosine approach for the 
numerical simulation of two-dimensional sine-Gordon 
solitons. An explicit numerical scheme and an improved 
numerical scheme for the numerical solutions of (2+1) 
dimension SGE is proposed in [7-11]. Dehghan and his 
colleagues [13-18] proposed number of schemes for the 
numerical solutions of two-dimensional damped and 
undamped sine-Gordon equations.  

On the basis of the literature review, it appears that no work 
was reported on solving (2+1) model of sine-Gordon 
equation with first time derivative that governs the current 
flow density through the Josephson junction when 0 

using Finite Difference Method. It is the objective of this 
paper to numerically solve the (2+1) SGE with the first time 
derivative on a rectangular domain subject to some 
prescribed boundary conditions. The rest of the paper is
organized as follows; in Section II the Method of solution of
(2+1) SGE is briefly discussed. After a brief discussion of
the numerical Method, Section III describes the numerical 
schemes developed and stability for the schemes analyzed. 
Section IV is numerical results and discussion while the last 
Section V is about conclusion and recommendation.

2. Method of Solution 

The numerical methods can be categorized as Finite 
Difference, Finite element, Finite volume and Boundary 
element. The method of Finite Difference is one of the most 
valuable methods of approximating numerical solutions of
PDEs. In this study, Finite Differences Method is used to
solve a (2+1) dimensional Sine-Gordon Equation (1) with 
first time derivative. Before numerical computations are 

made, there are three important properties of finite 
difference equations that must be considered, namely;  
a) Convergence: A finite difference equation is convergent 

if the solution of finite difference equation approaches 
the exact solution of the partial differential equation as
the mesh sizes approaches zero.  

b) Consistency: When a truncation error goes to zero, a 
finite difference equation is said to be consistent or
compatible with a partial differential equation.  

c) Stability: The difference between a partial differential 
equation and the equivalent finite difference expression 
is referred to as truncation error. A numerical process is
said to be stable if it limits amplification of all 
components of the initial conditions.  

The use of finite difference techniques for the solution of
partial differential equation is a three step process .These 
steps are;  
1) The partial differential equations are approximated by a 

set of linear equations relating to the values of the 
functions at each mesh point.  

2) The set of the algebraic equations, generated for equation 
must be solved and  

3) An iteration procedure has to be developed which takes 
into account the non-linear character of the equation. In
our endeavor to solve the (2+1) dimensional sine-Gordon
equation, the stability of the scheme developed for the
equation is analyzed.

3. Numerical Schemes and Stability Analysis 

In this section, a numerical scheme is developed for 
Equation (1) namely; An Alternating Direction Implicit 
(ADIS) numerical schemes and its stability analyzed using 
Matrix method. 

3.1 Discretization of Partial Derivatives 

The finite difference technique basically involves replacing 
the partial derivatives occurring in the partial differential 
equation as well as the boundary and initial conditions by
their corresponding finite difference approximations and 
then solving the resulting linear algebraic system of
equations by a direct method or a standard iterative 
procedure. The numerical values of the dependent variable 
are obtained at the points of intersection of the parallel lines, 
called mesh points or nodal point.  

3.2 Discretization of Equation (1)

Discretization of Equation (1) is obtained by replacing 
partial derivatives appearing in the equation with their Finite 
difference approximations as follows 

 
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2 2
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t t
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(6)

3.3 Alternating Direction Implicit Scheme (ADIS) 

In this scheme we advance the solution of the (2+1) sine-
Gordon partial differential Equation (1) from nth plane to
(n+1)th plane by replacing xxu by implicit finite difference 

approximation at the (n+1)th plane. Similarly, ttu , yyu  and

tu  are replaced by an explicit central finite difference 
approximation at the nth plane as in equations (2), (4) and (5) 
respectively and sinu by (6). With these approximations 
substituted into Equation (1), the following scheme is
obtained
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We let x y t s       , 2 1c   and multiplying Equation (7) by  
224c x , we obtain the scheme;  
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3.4 Stability Analysis of Alternating Direction Implicit 
Scheme (ADIS) 

We use also the matrix method to analyze stability of the 
scheme (8). This is done by expanding the scheme in
equation (8) by taking    1,2,3,............... 2 , 1i N N  

.We get the system of linear algebraic equations as
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Writing the system of algebraic Equations (9) in matrix-vector form; 
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The system in Equation (10) can be written as
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Therefore, Equation (12) is compactly written as
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Using the formula in (15), the eigenvalues of 1NA  and 1NI 

matrix are 
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For a tridiagonal matrix, the modulus of the eigenvalue of
the amplification matrix E should be less than or equal to
unity 

2

2

6 4sin
2( 1)

1
20 4 16sin

2( 1)

E

m
N

ms
N






 
  

 
 

 
    

                  (17)

a) For 2sin 0
2( 1)

m
N
 

 
 

, Equation (17) becomes; 

6 1
20 4E s

  
                                 

 (18) 

b) For 2sin 1
2( 1)

m
N
 

 
 

, Equation (17) becomes; 

6 4 1
20 4 16
1 1

1

E

E

s

s






 
  

 
                            (19)

The Equation (18) and (19) satisfies the stability conditions. 
The condition on the right is always satisfied as the left 
inequality requires. All the eigenvalues in Equations (18) 
and (19) are bounded by 1 since the denominator is larger 
than the numerator. Thus the ADIS scheme is
unconditionally stable. 

4. Numerical Solution of Equation (1) 

In this section, Equation (1) is solved using finite difference 
method and results presented graphically.  

4.1Alternating Direction Implicit scheme  

If we take ∆x=∆y=0.25 on a square mesh and ∆t = 0.01,
1Jc      and 1.1    and substituting these values 

into Equation (1), the following scheme is obtained; 

1 1 1 1
1, , 1, , , 1 , 1 ,0.16 0.43 0.16 0.8 0.16 0.16 0.01n n n n n n n

i j i j i j i j i j i j i jU U U U U U U   
         

 (20)
If i is varied from 1,2,3,...............10i  , 1j   and 0n  , 
the systems of linear algebraic equations are obtained as
follows matrix equation is obtained as

1 1 1 0 0 0 1
2,1 1,1 0,1 1,1 1,2 1,0 1,0

1 1 1 0 0 0 1
3,1 2,1 1,1 2,1 2,2 2,0 2,0

1 1 1
4,1 3,1 2,1 3

i=1   : 0.16 0.43 0.16 0.8 0.16 0.16 0.01

i=2   : 0.16 0.43 0.16 0.8 0.16 0.16 0.01

i=3   : 0.16 0.43 0.16 0.8

U U U U U U U

U U U U U U U

U U U U





      

      

    0 0 0 1
,1 3,2 3,0 3,0

1 1 1 0 0 0 1
5,1 4,1 3,1 4,1 4,2 4,0 4,0

1 1 1 0 0 0 1
6,1 5,1 4,1 5,1 5,2 5,0 5,0

0.16 0.16 0.01

i=4   : 0.16 0.43 0.16 0.8 0.16 0.16 0.01

i=5   : 0.16 0.43 0.16 0.8 0.16 0.16 0.01  

i=6   : 0

U U U

U U U U U U U

U U U U U U U







  

      

      

1 1 1 0 0 0 1
7,1 6,1 5,1 6,1 6,2 6,0 6,0

1 1 1 0 0 0 1
8,1 7,1 6,1 7,1 7,2 7,0 7,0

1 1 1 0
9,1 8,1 7,1 8,1

.16 0.43 0.16 0.8 0.16 0.16 0.01

i=7   : 0.16 0.43 0.166 0.8 0.16 0.16 0.01

i=8   : 0.16 0.43 0.16 0.8 0.16

U U U U U U U

U U U U U U U

U U U U





      

      

     0 0 1
8,2 8,0 8,0

1 1 1 0 0 0 1
10,1 9,1 8,1 9,1 9,2 9,0 9,0

1 1 1 0 0 0 1
11,1 10,1 9,1 10,1 10,2 10,0 10,0

0.16 0.01

i=9   : 0.16 0.43 0.16 0.8 0.16 0.16 0.01

i=10 : 0.16 0.43 0.16 0.8 0.16 0.16 0.01

U U U

U U U U U U U

U U U U U U U



















 

      

       









                                       (21) 
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 With the initial and boundary conditions 
  ( ), ,0 x yu x y e  and  0, , 0,u y t   10, , 0u y t  , for 

0 10x   ,  ,0, 0,u x t   ,2, 0u x t   , for 0 2y 

respectively the above systems of equations (21) can be
written in matrix-vector form as The above systems 
Equation (21) can be written in matrix –vector form as

0.43 0.16 0 0 0 0 0 0 0 0
0.16 0.43 0.16 0 0 0 0 0 0 0

0 0.16 0.43 0.16 0 0 0 0 0 0
0 0 0.16 0.43 0.16 0 0 0 0 0
0 0 0 0.16 0.43 0.16 0 0 0 0
0 0 0 0 0.16 0.43 0.16 0 0 0
0 0 0 0 0 0.16 0.43 0.16 0 0
0 0 0 0 0 0 0.16 0.43 0.16 0
0 0 0 0 0 0 0 0.16 0.43 0.16
0 0 0 0 0 0 0 0 0.16 0.43






 
















1
11
1
21
1
31
1
41
1
51
1
61
1
71
1
81
1
91
1
101

0.10400
0.0400
0.0160
0.00536
0.00200
0.000728
0.000272
0.000096
0.000036

0.0000136

U

U

U

U

U

U

U

U

U

U

 
 

  
   
  
   
      

    
       
   
   

   
       
    

 
 











 
 
 
 
 
 

                            (22) 

When the parameter  is changed to 3.7µΩ, 7.2 µΩ and 9.3 
µΩ and with use of MATLAP, we get the solutions of

matrix –vector Equation (22) and tabulate the results in table 
1 below 

Table 1: (2+1) –dimension SGE Numerical Solution u(x,y) with varying surface damping parameter β
L β =1.1 µΩ β =3.7µΩ β =7.2 µΩ β =9.3 µΩ

1 5.40116×10-3 8.558000×10-3 1.231601×10-2 1.423109×10-2

2 2.514496×10-2 4.636755×10-2 5.018436×10-2 8.208707×10-2

3 1.030042×10-2 2.101222×10-2 1.950365×10-2 3.161732×10-2

4 3.61024×10-3 3.802803×10-3 6.605925×10-3 6.930631×10-3

5 1.327587×10-3 1.502139×10-3 2.450177×10-3 2.588760×10-3

6 4.845999×10-4 5.060644×10-4 8.930032×10-4 6.055359×10-4

7 1.7991210-4 2.423222×10-4 3.330352×10-4 4.619052×10-4

8 6.430021×10-5 6.89082×10-4 1.179672×10-4 1.305606×10-4

9 2.38406×10-5 2.52046×10-5 4.379454×10-5 4.533537×10-5

10 2.207248×10-5 1.605775×10-5 1.705775×10-5 1.862447×10-5

The results in table 1 above are represented graphically as shown in figures 1 and 2 below 

Figure 1: Graph of Josephson junction current against Josephson junction length with varying β=1.1µΩ,
β =3.7 µΩ, β=7.2 µΩ and β=9.3 µΩ
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Figure 2: 3D Surface plots for Numerical Solution u(x, y) corresponding to β=1.1µΩ, β =3.7 µΩ, β=7.2 µΩ and β=9.3 µΩ

4.2 Discussion 

From the tables 1 and the figures 1 and 2, the computational 
results obtained indicate that as the length L, of the 
Josephson junction increases, the Josephson junction current 
decrease till a point where it starts dropping to zero. The 
results also indicate that when the Josephson junction 
current increases, the surface damping parameter 

(representing resistance of superconductor electrodes of
Josephson junction) increases also. The increase in the 
Josephson junction current makes the temperatures on the 
junction superconductor electrodes to be very high. 
Superconductivity is destroyed by high currents (critical 
current Jc). Superconductivity is also destroyed by magnetic 
fields created by these high currents. This Critical magnetic 
field depends typically on temperature. Then the fluxon will 
move towards the region of the junction with smaller self 
energy, i.e., from the cold to the hot end of the junction. 
Certain energy dissipation is associated with such motion. 
Moreover, the energy is transmitted by fluxons from the cold 
to the hot end of the junction.  

5. Conclusion 

It can be concluded that an increase in Josephson junction 
length leads to a decrease in the magnitude of Josephson 
junction current flowing through the long Josephson 
junctions. It is also observed that an increase surface 
damping parameter of Josephson junction superconductor 
electrodes leads to an increase in the Josephson junction 
current.  
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