Soil water availability and capacity of nitrogen accumulation influence variations of intrinsic water use efficiency in rice

Leaf intrinsic water use efficiency (WUE_i) coupling maximum assimilation rate ($A_{\rm max}$) and transpirable water lost via stomatal conductance ($g_{\rm sc}$) has been gaining increasing concern in sustainable crop production. Factors that influence leaf $A_{\rm max}$ and WUE_i in rice ($Oryza\ sativa$) L. cv Unkang) at flooding and rainfed conditions were evaluated. Positive correlations for leaf nitrogen content ($N_{\rm m}$) and maximum carboxylation rate ($V_{\rm cmax}$), for nitrogen allocation in Rubisco enzymes and mesophyll conductance ($g_{\rm m}$) were evident independent of cropping cultures. Rainfed rice exhibited enriched canopy leaf average $N_{\rm m}$ resulting in higher $A_{\rm max}$, partially supporting improved leaf WUE_i. Maximum WUE_i (up to 0.14 µmol mmol⁻¹) recorded in rainfed rice under drought conditions resulted from increasing $g_{\rm m}/g_{\rm sc}$ ratio while at cost of significant decline in $A_{\rm max}$ due to hydraulically constrained $g_{\rm sc}$. $A_{\rm max}$ sensitivity related to $g_{\rm sc}$ which was regulated by plant hydraulic conductance. WUE_i was tightly correlated to $V_{\rm cmax}/g_{\rm sc}$ and $g_{\rm m}/g_{\rm sc}$ ratios across the paddy and rainfed not to light environment, morphological and physiological traits, highlighting enhance capacity of $N_{\rm m}$ accumulation in rainfed rice with $g_{\rm sc}$ at moderately high level similar to paddy rice facilitate optimization in $A_{\rm max}$ and WUE_i while, is challenged by drought-vulnerable plant hydraulic conductance.