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Abstract 
In this paper, we examine conservative autonomous dynamic vibration equation, f(x) = sech x which 
is time vibration of the displacement of a structure due to the internal forces, with no damping or 
external forcing. Numerical results using New mark method are tabulated and then represented 
graphically. Further the stability of the algorithms employed is also discussed. 
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Introduction 
Studying the variation of some physical quantities on other physical quantities would lead to 
differential equations, [6]. Many engineering subjects, such as mechanical vibration or structural 
dynamics, heat transfer, or theory of electric circuits, are founded on the theory of differential 
equations. [4] 

Systems described by differential equations are complex, or so large, that a purely analytical solution 
to the equations is not yielded, thus the use of computer simulations and numerical methods to 
produce results. The biggest numbers of structures are in a continuous state of dynamic motion 
because of random loading such as wind, vibration equipment, or human loads. Thus a lot of 
consideration has been given in the design of certain facilities or structures which need to resist 
sudden but strong vibrations. [2] and [5]. 

In this study, we are mainly interested in examining the time vibration of the displacement of a 
structure due to the internal forces, with no damping or external forcing. 

Non-linear conservative autonomous second order system 
We consider the second order systems of non-linear conservative autonomous equations generally 
given by 

ሷݔߢ  ൌ ሶݔߦ െ  ሻ                                                                                   (1)ݔሺ݂ߩ

with some initial conditions ݔሺ0ሻ ൌ ߱଴  and  ݔሶሺ0ሻ ൌ ߱ଵ , where ߢ,  are real positive numbers  ߩ and  ߦ
and ݔߦሶ  is the damping force. 

As an explanation to the new terms, we note that: 
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a) The system is conservative because dynamic systems obey the principal of conservation of 

energy which asserts that the sum of kinetic and potential energies is constant in a 
conservative force field. 

b) The system is autonomous because we are concerned with a system of ordinary differential 
equations which does not explicitly but implicitly contain the independent variable t (time). 

c) The restoring force, ݂ሺݔሻ, defines the position of the moving object from its equilibrium point. 
d) There is no damping force i.e. no resisting medium, െݔߦሶ ൌ 0. 

Thus substituting ߢ ൌ 1,െ ݔߦሶ ൌ ߩ ݀݊ܽ 0 ൌ 1,  we have  

ሷݔ  ൌ  െ݂ሺݔሻ                                                                                               (2) 

and for our study let us consider 

 ݂ሺݔሻ ൌ sech  (3)                                                                                          ݔ

leading to the dynamic vibration equation 

ሷݔ  ൌ െ݂ሺݔሻ, ሺ0ሻݔ ൌ ,଴ߙ ሶݔ  ݀݊ܽ ሺ0ሻ ൌ , ݐܽ ଵߙ ݐ ൌ 0.                                                    (4) 

From equation (2), we can derive an autonomous system, in the form of 

 ௗ௫

ௗ௧
ൌ and     ௗ௬   ,ݕ

ௗ௧
ൌ െ݂ሺݔሻ                                                                      (5) 

Where the right hand side does not involve t explicitly but implicitly through the fact that x and y 
themselves depend on t and thus being self governing. 

The above reduction of the second order non-linear to equivalent first order nonlinear is by 
introducing a new independent variable 

ݕ  ൌ
ௗ௫

ௗ௧
 

and since      

  ௗ௬
ௗ௧
ൌ  

ௗమ௫

ௗ௧మ
 

the function x, y satisfy the equivalent first-order system 

              
ݔ݀

ݐ݀
ൌ  ,ݕ

             
ݕ݀

ݐ݀
ൌ െ݂ሺݔሻ      

Where equivalent means that each solution to the first order system uniquely corresponds to a 
solution to the second order equation and vice versa, [2], Specifically, equation (2) is equivalent to the 
autonomous system, equation (6): 

            
ௗ௫

ௗ௧
ൌ ,ݕ

ௗ௬

ௗ௧
ൌ െ݂ሺݔሻ, ሺ0ሻݔ ൌ ݐ  ݐܽ  ଴ߙ ൌ  ଴                                                         (6)ݐ

From equation (6),   ௗ௬
ௗ௫
ൌ െ 

௙ሺ௫ሻ

௬
                                                                                    (7) 
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                ⇒  න ݕ݀ݕ
௬

ఈబ

ൌ െන ݂ሺݔሻ݀ݔ
௫

ఈబ

 

or  

                
ଶݕ

2
െ
଴ߙ
ଶ

2
ൌ െ න ݂ሺݔሻ݀ݔ

଴

ఈబ

൅ න ݂ሺݔሻ݀ݔ
௫

଴

 

or 

               
௬మ

ଶ
൅ ׬ ݂ሺݔሻ݀ݔ

௫

଴
ൌ

ఈబ
మ

ଶ
 ൅ ׬ ݂ሺݔሻ݀ݔ

ఈబ
଴

                                                  (8) 

i.e. KE + PE = C where KE  = ௬
మ

ଶ
  is the kinetic energy of the dynamic system, 

ܧܲ ൌ ׬ ݂ሺݔሻ݀ݔ
௫

଴
   is the potential energy of the dynamic system, equation (2) while 

ܥ  ൌ ఈబ
మ

ଶ
 ൅ ׬ ݂ሺݔሻ݀ݔ

ఈబ
଴

  is the constant (energy level). So equation (8) expresses the law of conservation 
of energy. For the physical interpretation of the study, the non-linear restoring force, ݂ሺݔሻ above, 
gives rise to special cases of non-linear spring motion according to its behavior. Equation (2) is said to 
represent motion of: 

a) a hardening spring if free vibration frequencies increase along with the amplitude i.e. the 
magnitude of the restoring force, ݂ሺݔሻ acting on the mass, does increase more rapidly than that of 
a linear spring, 

b) a softening spring if free vibration frequencies decrease along with the amplitude i.e. the 
magnitude of the restoring force, ݂ሺݔሻ acting on the mass, does increase less rapidly than that of a 
linear spring, [4]. 

The above mentioned two special cases of equation (2) form the central subject of discussion. 
Considering function (3) and another situation where the restoring force is 

              ݂ሺݔሻ ൌ ଶݔ ൅ ݔ െ 2                                                                                                                                                     ሺ9ሻ 

we have two cases 

a) ௗమ௫

ௗ௧మ
൅ ଶݔ ൅ ݔ െ 2 ൌ 0 

b) ௗమ௫

ௗ௧మ
൅ sech ݔ ൌ 0  

The behavior of the graphs shows clearly the idea of the hardening spring and softening spring for 
the two non-linear restoring forces given. Considering the magnitude of the non-linear restoring 
force, ݂ሺݔሻ ൌ ଶݔ   ൅ ݔ െ 2, in case (a), since it does increase more rapidly than that of a linear spring i.e. 
݂ሺݔሻ  ൌ -it represents a hardening spring. On the other hand, considering the magnitude of the non ,ݔ 
linear restoring force ݂ሺݔሻ  ൌ  in case (b), since it does increase less rapidly than that of a linear ݔ ݄ܿ݁ݏ 
spring, i.e. ݂ሺݔሻ  ൌ  .it represents a softening spring ݔ 

Numerical Solution of equation (2) 
Numerical methods available for application in determining solution of Nonlinear systems for the 
implicit non-linear dynamic system (4) are numerous and include Newmark, Wilson-theta, Hilbert-
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Hunges-Taylor and Houbolt. In determining the solution for the implicit non-linear dynamic system 
(4), the implicit dynamic method we will apply is Newmark algorithm method since it is 
unconditionally stable and able to converge rapidly to a meaningful solution. 

Newmark's Algorithm 

Considering the equation (2) given by  ݔሷ  ൅  ݂ሺݔሻ  ൌ  0, Newmark's originally proposed method 
applied to it is of the form 

௡ାଵݔ                 ൌ ௡ݔ ൅ ሶݔ݄ ൅ ൬
1

2
െ ሷ௡ݔ൰݄ଶߚ ൅  ሷ௡ାଵ                                                                                                 ሺ10ሻݔଶ݄ߚ

ሶ௡ାଵݔ                 ൌ ሶ௡ݔ ൅ ሺ1 െ ሷ௡ݔሻ݄ߛ ൅  ሷ௡ାଵ                                                                                                                  ሺ11ሻݔ݄ߛ

ሷ௡ݔ                 ൅ ݂ሺݔ௡ሻ ൌ ሷ௡ݔ   ݎ݋    0 ൅ ௡݂ ൌ 0                                                                                                                    ሺ12ሻ 

Where h is the time step and ߚ and ߛ are the two Newmark parameters.[6] and [8] 

write ݊  ൅  1 for n into (12) to get 

ሷݔ       ௡ାଵ  ൅  ௡݂ାଵ ൌ 0                                                                                 (13) 

Eliminating  ݔሷ௡ାଵ  from (12) and (10) we have 

௡ାଵݔ  ൅ ݄ଶߚ ௡݂ାଵ ൌ ௡ݔ ൅ ሶ௡ݔ݄ ൅ ݄ଶ ቀ
ଵ

ଶ
െ ቁߚ  ሷ௡                                              (14)ݔ

Similarly, when we eliminate  ݔሷ ௡ାଵ   from (12) and (11) we have 

ሶ௡ାଵݔ  ൅ ݄ߛ ௡݂ାଵ    ൌ ሶ௡ݔ ൅ ሺ1 െ  ሷ௡                                                   (15)ݔሻ݄ߛ

Eliminate ݔሶ௡ from (14) and (15) i.e. ሺ14ሻ െ  ݄ሺ15ሻ,  we have 

௡ାଵݔ  ൅ ሺ݄ߚଶ െ ଶሻ݄ߛ ௡݂ାଵ ൌ ሶ௡ାଵݔ݄ ൅ ݄ଶ ቀߛ െ ߚ െ
ଵ

ଶ
ቁ ሷ௡ݔ ൅  ௡                       (16)ݔ

Write ݊  ൅  1 for ݊ in (14) 

௡ାଶݔ ൅ ܿ ௡݂ାଶ  ൌ ௡ାଵݔ   ൅ ሶ௡ାଵݔ݄   ൅  ሷ௡ାଵ                                                           (17)ݔܾ 

Where ܽ ൌ ሺ1 െ ,ሻ݄ߛ ܾ ൌ ݄ଶ ቀ
ଵ

ଶ
െ ቁߚ  ܽ݊݀ ܿ ൌ  ݄ଶߚ  

Eliminate ݔሶ௡ାଵ  from (17) and (15) to get 

௡ାଶݔ  ൅ ܿ ௡݂ାଶ  ൌ ௡ାଵݔ െ ଶ݄ߛ ௡݂ାଵ ൅ ሶ௡ݔ݄  ൅ ሷ௡ݔ݄ܽ ൅  ሷ௡ାଵ                          (18)ݔܾ 

using equation (14) to eliminate ݔሶ௡  in 18) 

௡ାଶݔ  ൅ ܿ ௡݂ାଶ ൌ ௡ାଵݔ2 ൅ ܿ ௡݂ାଵ െ ௡ݔ െ ሷ௡ݔܾ ൅ ሷ௡ݔ݄ܽ െ ଶ݄ߛ ௡݂ାଵ ൅  ሷ௡ାଵ                (19)ݔܾ

and (13) to substitute  ݔሷ௡ with െ݂ሺݔ௡ሻ  in  (19)  we get 

௡ାଶݔ  ൅ ܿ ௡݂ାଶ ൌ ௡ାଵݔ2 െ ሺܾ ൅ ଶሻ݄ߛ ௡݂ାଵ ൅ ܿ ௡݂ାଵ ൅ ሺܾ െ ݄ܽሻ ௡݂ െ  ,௡ݔ

or 

௡ାଶݔ  ൅ ݄ଶߚ ௡݂ାଶ ൌ ௡ାଵݔ2 ൅ ቀ2ߚ െ ߛ െ
ଵ

ଶ
ቁ ݄ଶ ௡݂ାଵ െ ௡ݔ ൅ ቀߛ െ ߚ െ

ଵ

ଶ
ቁ ݄ଶ ௡݂                    (20) 

௡ାଶݔ  ൅ ݄ଶߚ ௡݂ାଶ ൌ ܳ    where Q is known value. 
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The scheme (20) in the displacement only is a two-step (three-time-level) scheme. 

For ߚ ൌ 0 the scheme (20) become explicit, i.e. 

௡ାଶݔ  ൌ ௡ାଵݔ2 െ ቀߛ ൅
ଵ

ଶ
ቁ ݄ଶ ௡݂ାଵ െ ݔ௡ ൅ ቀߛ െ

ଵ

ଶ
ቁ ݄ଶ ௡݂                       (21) 

The maximum accuracy for equation (2) is achieved when ߚ଴ ൌ
ଵ

଺
   i.e. ߚ ൌ ଵ

ଵଶ
 and  ߚଵ ൌ

ଵ

ଶ
    

i.e.  ߛ ൌ ଵ

ଶ
 .  This is the trapezium rule for the linear case. 

substitute  ݔ௡ାଵ,  ሶ௡ାଵ in our test equation (2) and we haveݔ 

ሷ௡ାଵݔ  ൅ ݂ ቀݔ௡ ൅ ሶ௡ݔ݄ ൅ ݄ଶ ቀ
ଵ

ଶ
െ ቁߚ ሷ௡ݔ ൅ ݄ଶݔߚሷ௡ାଵቁ ൌ 0 or 

ሷ௡ାଵݔ  ൅ ݂ሺܽ଴ ൅ ݄ଶݔߚሷ௡ାଵሻ ൌ 0                      (22) 

Where  ܽ଴ ൌ ௡ݔ ൅ ሶ௡ݔ݄ ൅ ݄ଶ ቀ
ଵ

ଶ
െ ቁߚ  ሷ௡ାଵ (or implicit) providedݔ  ሷ௡  is known value. (22) is non-linear inݔ

ߚ ് 0,  and requires a non-linear iterative method such as Newton-Raphson for solution. 

Numerical Results of the Equation 
Using the Newmark Algorithm developed above, (0.0.20), we obtained the required numerical results 
as follows: 

Considering the scheme (20) i.e. 

௡ାଶݔ  ൅ ݄ଶߚ sech ௡ାଶݔ ൌ ܳ     

Where  ܳ ൌ ௡ାଵݔ2 ൅ ቀ2ߚ െ ߛ െ
ଵ

ଶ
ቁ ݄ଶ sech ௡ାଵݔ െ ௡ݔ ൅ ቀߛ െ ߚ െ

ଵ

ଶ
ቁ ݄ଶ sech  ௡ݔ

Which is the displacement only and two-step (three-time-level) scheme. 

Using R i386 3.3.1 computer programming with Newton-Raphson's iteration, 

௡ାଶݔ  ൌ ௡ାଵݔ െ
ிሺ௫೙శభሻ

ி′௫೙శభ 
    

from scheme (20) 

௡ାଵݔܨ  ൌ ௡ାଵݔ  ൅ ݄ଶߚ sech ௡ାଵݔ െ ܳ     

Thus  ݔ′ܨ௡ାଵ ൌ  1 ൅ ݄ଶߚሺെ sech ௡ାଵݔ      ௡ାଵሻݔ݄݊ܽݐ

௫೙శభ′ܨ  ൌ  1 െ ݄ଶߚ sech ௡ାଵݔ  ௡ାଵ                                                   (23)ݔ݄݊ܽݐ

therefore 

௡ାଶݔ  ൌ ௡ାଵݔ െ
௫೙శభା௛

మఉ ୱୣୡ୦௫೙శభିொ

ଵି௛మఉ ୱୣୡ୦௫೙శభ௧௔௡௛௫೙శభ
                                                                                                             ሺ24ሻ 

where sech ௡ାଵ is expressed as   ଵݔ

௖௢௦௛௫೙శభ
 to be used in the computer programmer as follows: 

Variables 0ݔ ൌ 01ݔ  ,௡ݔ ൌ 1ݔ,  ሶ଴ݔ ൌ  , ሺ௡ାଵሻݔ

2ݔ  ൌ ,ሺ௡ାଶሻݔ ܤ ൌ ,ሻߚሺܽݐ݁ܤ ݎ ൌ ሻ,   ܽ଴ߙሺ݄ܽ݌݈ܽ ൌ , ௡ݔ݄݊ܽݐ ܾ଴ ൌ ,௡ݔ݄ݏ݋ܿ ܾଵ ൌ ଴ݓ   ,௡ାଵݔ݄ݏ݋ܿ ൌ

ଵݓ   ,௡ݔ݄ܿ݁ݏ ൌ      ,௡ାଵݔ݄ܿ݁ݏ
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R Script: Newmark Algorithm 

݅ ൏ െ݈݅2.2 ,2.1 ,2.0 ,1.9 ,1.8 ,1.7 ,1.6 ,1.5 ,1.4 ,1.3 ,1.2 ,1.1 ,1.0 ,0.9 ,0.8 ,0.7 ,0.6 ,0.5 ,0.4 ,0.3 ,0.2 ,0.1 ,0) ݐݏ, 
2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0) 

j < - list (0.2, 0.0833, 0.05) #List of Beta 
s < -c( ) 
set < -c( ) 
z < -c( ) 

#Given that; 0ݔ  ൏ െ 0.2;  01ݔ  ൏ െ 01: 5 

for (B in j) 

#print(B) 

#B refers to Beta ሺߚሻ and r refers to Alpha ሺߙሻ 

If (B = = 0.2)[r < -0.1; k < -"Beta0.2   alpha0.1"] 

If (B = = 0.05)[r < -0.4; k < -"Beta0.05   alpha0.4"] 

if(B = = 0.0833)[r <- 0.1; k < -"Beta0.0833    alpha0.5"] 

for (h in i) 

#print(h) 

ܽ0 ൌ െ tanhሺ0ݔሻ ; ܾ0 ൏ െcosh ሺ0ݔሻ 
1ݔ ൏ െ0ݔ ൅ ሺ݄ ∗  01ሻݔ
ܽ1 ൏ െ tanhሺ1ݔሻ ; ܾ1 ൏ െcoshሺ1ݔሻ 

0ݓ ൏ െቀ1 ܾ0ൗ ቁ#sech ሺ0ݔሻ 

1ݓ ൏ െቀ1 ܾ1ൗ ቁ#sech ሺ1ݔሻ 

ܳ ൌ െሺ2 ∗ 1ሻݔ ൅ ቀ൫ሺ2 ∗ ሻܤ െ ݎ െ 0.5൯ ∗ ݄ ∗ ݄ ∗ 1ቁݓ െ ሺ0ݔ െ ൫ሺݎ െ ܤ െ 0.5ሻ ∗ ݄ ∗ ݄ ∗  0൯ݓ

2ݔ ൌ െ1ݔ െ
1ݔ ൅ ሺ݄ ∗ ݄ ∗ ܤ ∗ 1ሻݓ െ ܳ

ሺ1 െ ሺ2 ∗ ݄ ∗ ݄ ∗ ܤ ∗ 1ݓ ∗ ܽ1ሻሻ
 

#print (2ݔ) 

 ݏ ൏  െܿሺݏ, ݄ሻ 

 ݐ݁ݏ ൏  െܿሺݐ݁ݏ, ݇ሻ 

 ݖ ൏  െܿሺݖ,  2ሻݔ

 ݐ ൏  െ as. data.frame(as. numeric(s)) 

ܺ  ൏  െ as.data.frame (as. numeric (z)) 

ݐ݁ݏ ൏  െ as.data.frame(set) 

library (reshape) 

data ൏ െcbind(t,set,X) 

data൏ െ rename(data, c("as.numeric(s)" ="t","set"= "set","as.numeric(z)"="X")) 

library(ggplot2) ggplot(data = data; aes(x = t,  y = X, group = set,  shape = 

set,  colour = set))+geomline(size = 1)+labs(shape = "Key")+geompoint(size = 



                                                                               H. A. Ochieng, T. J. O. Aminer & N. Omolo Ongati 

42 
 

IJEMS 
2) + labs(list(title = "", x = "time", y = "x")) 

The following conditions were taken into account when compiling the results: 

i. It is clearly stated just before equation (22) that the maximum accuracy is achieved when 
ߚ ൌ

ଵ

ଵଶ
 and ߛ ൌ ଵ

ଶ
  and so our choice of the parameters was influenced by the given 

parameters, according to Zienkiewicz [9] and Wood [8]; 
ii. The stability of the numerical schemes is governed by small step size, ݄, according to Hughes, 

Caughey and Liu [3]. Given that ݔଵ ൌ ଴ݔ ൅ ଴ݔ ሶ଴ letݔ݄ ൌ 0.2 and ݔሶ଴ ൌ 1.5 thus ݔଵ ൌ 0.2 ൅
0.1ሺ1.5ሻ ൌ 0.35. 

Leading to the following results: 

t X when ߚ ൌ 0.2 and ߛ ൌ 0.1 X when ߚ ൌ ଵ

ଵଶ
 and ߛ ൌ ଵ

ଶ
 X when ߚ ൌ 0.05 andߛ ൌ 0.4 

0.0 0.20000 0.20000 0.20000 
0.1 0.49044 0.49043 0.49055 
0.2 0.76316 0.76308 0.76418 
0.3 1.02065 1.02051 1.0249 
0.4 1.26543 1.26546 1.27668 
0.5 1.49934 1.50034 1.52383 
0.6 1.72348 1.72697 1.76945 
0.7 1.93829 1.94654 2.01582 
0.8 2.14372 2.15970 2.26436 
0.9 2.33942 2.36668 2.51574 
1.0 2.52494 2.56742 2.77011 
1.1 2.69982 2.76168 3.02724 
1.2 2.86363 2.94914 3.28665 
1.3 3.01605 3.12942 3.54773 
1.4 3.15685 3.30215 3.80984 
1.5 3.28586 3.46697 4.07231 
1.6 3.40301 3.62357 4.33453 
1.7 3.50827 3.77166 4.59592 
1.8 3.60163 3.91099 4.85596 
1.9 3.68315 4.04138 5.11422 
2.0 3.75287 4.16263 5.37029 
2.1 3.81084 4.27463 5.62386 
2.2 3.85713 4.37725 5.87466 
2.3 3.89179 4.47040 6.12246 
2.4 3.91487 4.55402 6.36708 
2.5 3.92640 4.62806 6.60839 
2.6 3.92642 4.69247 6.84629 
2.7 3.91495 4.74722 7.08069 
2.8 3.89200 4.79230 7.31154 
2.9 3.85757 4.82769 7.53881 
3.0 3.81167 4.85337 7.76247 
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Stability of the Numerical Algorithms Employed 
From the results of the two-step (three-time level) scheme tabulated above and its corresponding 
graphical representation, it is clearly evident that for zero damping or no damping dynamic equation, 
the Newmark method is conditionally stable when the parameters chosen, for instance ߚ ൌ  0.05 and  
ߛ ൌ 0.4 are within the neighbourhood of the parameters associated with maximum accuracy i.e. ߚ ൌ
ଵ

ଵଶ
 and ߛ ൌ ଵ

ଶ
.  As we move away from maximum accuracy parameters, for instance taking  ߚ ൌ  0.2 

and  ߛ ൌ 0.1  the method is no longer conditionally stable. 
Conclusion 

In this study, we have looked at Newmark numerical scheme that can be used to solve the implicit 
nonlinear dynamic vibration equations. We used a displacement only, two-step (three-time-level) 
schemes with a R studio computer programmer which is very effective and fast enough in producing 
results. The equation has been solved using Newton-Raphson iteration method that converges fast to 
a meaningful solution. The results are tabulated and given graphically through an efficient and 
accurate graphical package known as the Rplot. 

From the stability of the numerical scheme, a small step size is needed, with maximum accuracy 
achieved when the Newmark parameters, ߚ and  ߛ   and are ଵ

ଵଶ
 ܽ݊݀ 

ଵ

ଶ
  respectively. The results of our 

study indicate that Newmark algorithm exhibit stable cases for the solution of the softening spring, 
equation (4) when parameters chosen are very close to the maximum accuracy parameters, otherwise 
unstable when parameters chosen are not close to the maximum accuracy parameters. 

 

Figure 1: The Plot of Restoring Forces 
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Figure 2: The graph of the Newton-Raphson results 
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