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Abstract

Many studies on preserver problems have been focusing on linear pre-

server problems in matrix theory. Kadison and Sourour showed that the

local derivations of Von Neumann algebras are continous linear maps

which coincide with some derivation at each point in the algebra over the

field of complex numbers. Most of the studies have been focusing on the

spectral norm preserver and rank preserver problems of linear maps on

matrix algebras but not on norm preserver problems for local automor-

phism of commutative Banach algebras. In this study, we have investi-

gated properties of local automorphism of commutative Banach algebras

and determined their norms. The objectives of the study have been to:

Investigate properties of local automorphisms of commutative Banach al-

gebras; establish norm preserving conditions for local automorphisms of

commutative Banach algebras and determine the norms of local automor-

phisms of commutative Banach algebras. The methodology involved the

concept of local automorphisms and derivations introduced by Kadison

and Sourour. We used Hahn-Banach extension theorem, Gelfand trans-

form and the results developed by Molnar to investigate the preserver

problems of local automorphisms. The results obtained show that local

automorphisms are linear, inner, bounded, continous and their groups

are algebraically reflexive. Moreover, the results on norms indicate that

‖φ(x) + φ(y)‖ = ‖x‖+ ‖y‖ and ‖φx(y)‖ = 2‖y‖. The results obtained in

this study are useful in the applications of operator algebras and quantum

mechanics.
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Chapter 1

INTRODUCTION

1.1 Mathematical background

The origin of Banach spaces dates back to 1920 when Banach submitted

his thesis which was then followed by Hahn-Banach theorem and Ba-

nach monograph in 1932, while the roots of commutative algebra can be

traced in the publication made by David [7] which has great applications

in number theory. Moreover, detailed history of Banach algebras and

linear operators have been outlined by Albert [3]. On the other hand,

Kentaro [17] studied Banach Spaces in which he solved many problems

from the theory of topological tensor products of locally convex spaces and

the theory of nuclear spaces. At the same time, Kadison [15] introduced

the study of local derivations of Von Nuemann algebra and some poly-

nomial algebras in which he proved that each continous local derivation

from a Von Neumann algebra M into a dual M -bimodule is a derivation.

Finally, Sakai [31] established inner derivations of W*-algebra. Therefore,

investigations of properties of local automorphisms of commutative of Ba-

nach algebra have not been exhausted. Several studies on norm preserver
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problems have been studied on Banach algebras and operators in; [1], [13],

[20], [22], [24], [25], [27] and [28]. In this study, we endevered to inves-

tigate properties of local automorphisms of commutative Banach algebra

and determine the norm preserver conditions for local automorphisms of

commutative Banach algebra. In order to carry out our investigation

successfully, we required some basic concepts which were useful in the

sequel.

1.2 Basic concepts

In this section, we give a number of definitions of terms and examples

which are encountered throughout this work.

Definition 1.1. A Group G is a non-empty set with a binary operation

∗ : G×G→ G satisfying the following operation axioms:

(i). Closure a ∗ b ∈ G for all a, b ∈ G.

(ii). (Associativity) (a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ G.

(iii). There exist an element e ∈ G called an identity of G such that

a ∗ e = e ∗ a = a, for all a ∈ G.

(iv). For each a ∈ G, there exist an element a−1 ∈ G called inverse of a

such that a ∗ a−1 = a−1 ∗ a = e.

Example 1.2. The set of all integers under addition is a group.

Example 1.3. The set of complex numbers G = {1, i,−1,−i} under

multiplication is a group.

2



Definition 1.4. Two groups G and E with elements a, b, c ∈ G and

a
′
, b
′
, c
′ ∈ E are said to be isomorphic if there is a one-to-one corre-

spondence between all their elements such that ab = c ⇒ a
′
b
′

= c
′

and

vice-versa that is a bijection ϕ : G → E such that ϕ(ab) = ϕ(a)ϕ(b), for

every a, b ∈ G.

Definition 1.5. A Ring R is a nonempty set with two binary operations

associating each elements a, b ∈ R, a sum a + b ∈ R and product a.b or

ab ∈ R and satisfying the following laws:

(i). a+ b = b+ a (Commutative law of addition).

(ii). ab = ba (Commutative law of multiplication.

(iii). (a+ b) + c = a+ (b+ c) (Associative law of addition).

(iv). a(bc) = (ab)c (Associative law of multiplication).

(v). There exist 0 ∈ R such that a+0 = a (Neutral element of addition).

(vi). There exist 1 ∈ R such that 1a = a1 = a (Neutral element of

multiplication).

(vii). For each a ∈ R, there exist −a ∈ R such that a+ (−a) = 0 (Addi-

titive inverse).

(viii). (a+ b)c = ac+ bc, c(a+ b) = ca+ cb (Distributive law).

Definition 1.6. A Field is a set K together with two operations; mul-

tiplication (·) and addition (+) for which the following conditions must

hold:

(i). Closure; ∀ a, b ∈ K, then a · b ∈ K and a+ b ∈ K.
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(ii). Associativity; ∀ a, b, c ∈ K, then (a.b).c = a.(b.c) and (a + b) + c =

a+ (b+ c).

(iii). Commutativity; ∀ a, b ∈ K, then a.b = a.b and a+ b = a+ b.

(iv). Distributivity; ∀ a, b, c ∈ K, then a.(b+ c) = ab+ ac and (a+ b).c =

ac+ bc.

(v). Existence of additive identity; ∃ 0 ∈ K for which a + 0 = a and

0 + a = a, ∀ a ∈ K.

(vi). Existence of multiplicative identity; ∃ 1 ∈ K for which a.1 = a and

1.a = a; ∀ a ∈ K.

(vii). Existence of additive inverse; ∀ a ∈ K ∃ x ∈ K such that a+ x = 0

and x+ a = 0 hence x = −a is the additive inverse.

(viii). Existence of multiplicative inverse; ∀ a ∈ K with a 6= 0 then a.x = 1

and x.a = 1 then x ∈ K is called multiplicative inverse of a denoted

by a−1

Definition 1.7. A Vector Space over field K is a nonempty set V on

which two operations are defined called scalar multiplication and addition

denoted by (·) and (+) respectively. For all a, b ∈ K and u, v, w ∈ V the

following must conditions hold:

(i). Closure; a.v ∈ V and u+ v ∈ V .

(ii). Commutativity of addition; u+ v = v + u ∈ V .

(iii). Associativity: u+(v+w) = (u+v)+w ∈ V and (a.b)v = a.(b.v) ∈ V .

4



(iv). Distributive law; a.(u + v) = (au) + (av) ∈ V and (a + b)v =

(a.v) + (b.v) ∈ V .

(v). Existence of additive identity: ∃ 0 ∈ V for which v + 0 = v ∈ V

and 0 + v = v ∈ V .

(vi). Existence of additive inverse; ∃ x ∈ V such that v + x = 0 = x+ v,

x = −v.

(vii). Unitary law. ∀ v ∈ V then 1.v = v.

Definition 1.8. Let A be a Banach algebra. An involution on Banach

algebra A is a map ∗ : A→ A satisfying the following property.

(i) (a∗)∗ = a, ∀ a ∈ A.

(ii) (αa+ βb)∗ = αa∗ + βb∗, ∀ a, b ∈ A and α, β ∈ K.

(iii) (ab)∗ = b∗a∗, ∀ a, b ∈ A.

The pair (A, ∗) is called an involutive Banach algebra.

Definition 1.9. A C∗-algebra is Banach algebra A with involution which

satisfies ‖x∗x‖ = ‖x‖2, ∀x ∈ A.

Example 1.10. The conjugation map is an involution over the field com-

plex numbers C.

Definition 1.11. A subset I of an Banach algebra A denoted as I ⊂ A

is an called an ideal if it is a linear subspace that satisfies x ∈ I, y ∈ A

then xy ∈ I.

5



Definition 1.12. Let V be a vector space. A norm is a nonnegative real

valued function ‖.‖ : V → K such that ∀ x, y ∈ V and α ∈ K the following

properties are satisfied:

(i) ‖x‖ ≥ 0 (nonnegativity).

(ii) ‖x‖ = 0 iff x = 0 (zero property).

(iii) ‖αx‖ = |α|‖x‖ (homogeneity).

(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

The ordered pair (V, ‖.‖) is called normed space.

Definition 1.13. A Banach algebra is a normed space (A, ‖.‖) over K

that satisfies ‖ab‖ ≤ ‖a‖‖b‖ ∀ a, b ∈ A (sub-multiplicative property).

Definition 1.14. Banach space is a complete normed vector space.

Definition 1.15. Let A be a Banach algebra. A is said to be commutative

if ab = ba for all a, b ∈ A.

Definition 1.16. Let X and Y be two normed vector spaces, a linear

operator T : X → Y is bounded if for all x ∈ X there exists a constant

c > 0 such that ‖Tx‖Y ≤ c‖x‖X holds.

Definition 1.17. Given a matrix A = (aij) ∈Mn(C), the trace tr(A) of

A is the sum of diagonal elements that is tr(A) = a11+a22+...+ann. Trace

is a linear map so that tr(λA) = λtr(A) and tr(A+B) = tr(A) + tr(B).

Definition 1.18. A operator Φ : B(H) → B(H) of the algebraic struc-

ture B(H) is called a local automorphism if for every x ∈ B(H) there is

6



an automorphism Φx ∈ B(H) such that Φx = Φx(x). Suppose A ⊂ B(H)

is a subalgebra. A linear operator φ : A → B(H) is called an inner

automorphism if φa(x) = xa− ax; ∀; a, x ∈ A.

Definition 1.19. A subset E ⊂ B(H) is called topologically reflexive if

for any operator T ∈ B(H) belongs to E whenever T has the property

that T (x) ∈ E(x), x ∈ H.

Definition 1.20. Let A and B be Banach algebras. A monomorphism

of A into B is an injective homomorphism of A into B.

Definition 1.21. Let A and B be Banach algebras. Isomorphism of A

into B is a bijective homomorphism of A into B.

Definition 1.22. Let A be a Banach algebra. The spectrum of x ∈ A is

the set δ(x) = {λ ∈ C : x − λI is not invertible} while the spectral

radius r(x) = supλ∈δ(x)|λ|.

1.3 Statement of the problem

The basic question on the area of preserver problems is whether an oper-

ator between two spaces with the same structure (rings, groups and vec-

tor space) is a homomorphism and it preserves linearity. The preserver

problem is concerned with a question of describing the general form of

all transformation of a given structure of groups, rings and vector space

which preserves the quantity attached to each element and distinguished

set of elements and relations. Studies have been done concerning rank

preserver problems in matrix theory, the commutativity preserver maps
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in full matrix algebras, derivations of commutative normed algebras, mul-

tiplicative norm preserver maps between invertible groups of Banach al-

gebras, norm preserver inequalities of commutative unital Banach algebra

and spectrum preserver problems of linear mapping in Banach algebras.

However, studies on the norm preserver problem for local automorphisms

of commutative Banach algebras have not been done. In this study, we

investigated properties of local automorphism of commutative Banach al-

gebras, established the norm preserver conditions for local automorphisms

of commutative Banach algebras and determined the norms for local au-

tomorphisms of commutative Banach algebras.

1.4 Objectives of the study

The objectives of study have been to:

(i). Investigate the properties of local automorphisms of commutative

Banach algebras.

(ii). Establish norm preserving condition for local automorphisms of

commutative Banach algebras.

(iii). Determine the norms of local automorphisms of commutative Ba-

nach algebras.

8



1.5 Significance of the study

The results of this study are useful in analysis of local automorphism that

preserve the norm in commutative Banach algebras. Moreover, the results

are applicable in operators and function algebras in quantum symmetries.

1.6 Research methodology

Since the research was mainly dealing with establishing the norm pre-

server conditions for local automorphisms of commutative Banach alge-

bra, a prerequisite knowledge was required in functional analysis, Op-

erator theory, General topology and Commutative Banach algebra. We

borrowed useful results from local spectral theory and Hilbert spaces.

1.6.1 Some Fundamental Results

We used known results in solving the stated objectives of the problem.

The proofs were omitted.

Theorem 1.23 (4, Hahn-Banach Theorem D.1). Let X be a real linear

space; Y ⊂ X a linear subspace and let p : X → R be a sublinear

functional such that; p(x + y) ≤ p(x) + p(y) ∀x, y ∈ X p is additive

and p(λx) ≤ λp(x) ∀ x ∈ X and λ ≥ 0 p is non-negative sub-

homogenous. Then there is an R linear functional f : A → R such that

∀x ∈ E f(X) ≤ p(x).

9



Theorem 1.24 (30, Theorem 2.35). If B is a commutative Banach al-

gebra, M is its maximal ideal space and Γ : B → C(M) is the Gelfand

transform then:

(i). M is not empty.

(ii). Γ is an algebra homomorphism.

(iii). ‖Γf‖∞ ≤ ‖f‖ for f ∈ B.

(iv). f is invertible in C(M).

Theorem 1.25 (18, Theorem 2.1). Let X be an infinite-dimensional Ba-

nach space and let φ be a linear map from B(X) onto itself such that φ

is a local automorphism. Then φ is an automorphism.

Theorem 1.26 (27, Theorem 4.2.7). If a surjective mapping T : A→ B

between uniform algebras satisfies ‖Tf + Tg‖ = ‖f + g‖ and ‖|Tf | +

|Tg|‖ = ‖|f |+|g|‖ for f, g ∈ A there exist a homomorphism ψ : σB → σA

such that |(Tf)(y)| = |f(ψ(y))| for every f ∈ A and y ∈ σ(B).

Corollary 1.27 (19, Proposition 4.1). For x, y ∈ H we have |〈x, y〉| ≤

‖x‖‖y‖ and equality holds if and if x and y are linearly dependent.

Theorem 1.28 (19, Theorem 4.3). Let H be Hilbert space and Y be closed

subspace of H.Then for x ∈ H there exist unique y ∈ Y called a projection

on Y and is denoted by Πy(x) such that ‖x − y‖ = minz∈Y ‖x − z‖.

Moreover y is characterized by the property 〈x− y, z〉 = 0 for z ∈ Y .

10



1.6.2 Computational Techniques

Definition 1.29. Let U and V be two Vector Spaces over K and let T

be the subspace of free vector space KU×V generated by all the vectors of

the form

r(u, v) + s(u
′
, v) (ru+ su

′
, v) and r(u, v) + s(u, v

′
) (u, rv + sv

′
)

for all r, s ∈ K and u, u
′
, v, v

′ ∈ V . Then the quotient space KU×V /T is

called the tensor product of U and V and is denoted by U ⊗ V .

An element of U ⊗ V has the form: Σri(ui, vi) + T .

Definition 1.30. Let V be vector space and let U,W be subspaces of V .

The V is said to be direct sum decomposition of subspaces U1, ..., Uk,

if it can expressed as V = U1 ⊕ ...⊕Uk if for all v ∈ V there exist unique

vectors ui ∈ Ui for 1 ≤ i ≤ k such that v = u1 + u2 + ...+ uk.

11



Chapter 2

LITERATURE REVIEW

2.1 Introduction

Many research studies have been on properties of commutative algebras

and they have obtained interesting results. In this chapter, we discuss

related literature which are useful to our study.

2.2 Automorphisms

Singer and Wermer [33] studied on derivations of commutative Banach

algebras over the complex field and showed that derivations map commu-

tative Banach algebra into its radical as shown in the theorem below:

Theorem 2.1 (33, Theorem 1). Let B be a commutative Banach algebra

and φ be a bounded derivation on B. Then φ maps B into its radical.

In particular if B is semi-simple then φ = 0, where the radical of B is

the intersection of all maximal ideals M ∈ B and if the radical reduces to

zero element, then B is called semi-simple.
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From the theorem above, we know that φ is bounded that is

sup‖a‖=1 ‖φ(a)‖ = ‖φ‖ <∞, a ∈ B. Singer and Wermer [33] studied the

bounded derivation of commutative Banach algebra. However, they never

investigated properties of local automorphism of commutative Banach

algebras. In this study, we have showed that every local automorphism

of commutative Banach algebras is bounded.

At the same time Sakai [31] worked on inner derivation of W ∗-algebra

and the main result is in the theorem below;

Theorem 2.2 (31, theorem 1). Every derivation of W ∗-algebra is inner

Sakai [31] did not investigate properties of local automorphism of com-

mutative Banach algebra. In this thesis, we have showed that local auto-

morphism of commutative Banach algebra is inner.

Sang and Seon [32], proved that every 2-local derivation on Mn, the n×n

matrix algebra are derivations as shown in the theorem below.

Theorem 2.3 (32, Theorem 3). Let Mn be the n×n matrix algebra over

C and φ : Mn →Mn a 2-local derivation. Then φ is a derivation.

In [32] they considered 2-local derivation over matrix algebras. However,

they never considered local automorphisms of commutative Banach alge-

bras. In our work, we have showed that every local automorphism is an

automorphism.

Peter [26] proved that every 2-local automorphism φ : B(H) → B(H) is

an automorphism where B(H) is the algebra of all bounded linear oper-

ators on H. The results are as follows:

Theorem 2.4 (26, Theorem 1). Let H be an infinite-dimensional sepa-

rable Hilbert space and let B(H) be the algebra of all bounded linear op-
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erators on H. Then every 2-local automorphism φ : B(H) → B(H) (no

linearity, surjectivity or continuity of φ is assumed) is an automorphism.

Theorem 2.5 (26, Theorem 2). Let H be an infinite-dimensional sep-

arable Hilbert space, and let B(H) be the algebra of all linear bounded

operators on H. Then every 2-local automorphism φ : B(H) → B(H)

(no linearity, surjectivity or continuity of φ is assumed) is a derivation.

In Theorem 2.4 and Theorem 2.5, Peter established that every 2-local

automorphism is an automorphism or derivation. However, investigation

of properties of local automorphism of commutative Banach algebras has

not been done. In the study, we have showed that every local automor-

phism is linear and continous.

The properties of group automorphism has been studied in [10]. Felix [10]

studied the reflexivity of the automorphism group of the Banach algebras

L∞(µ) for various measures µ. They proved that if µ is non-atomic σ-

finite measure, then the automorphism group of L∞(µ) is algebraically

reflexive if and only if L∞(µ) is ∗-isomorphic to L∞[0, 1] but they did not

consider group of local automorphism of commutative Banach algebras.

In this work, we have showed that the group of every local automorphism

of B(H) is algebraically reflexive.

Further studies of locally inner derivation has been done in [21]. Molnar

[21] proved that every locally inner derivation on symmetric norm ideal

of operators is inner. A similar study of locally inner automorphisms has

been done by David [8]. In [8] they established how locally inner auto-

morphisms are related to diagonal sums and characterization of locally

inner automorphisms of Von Nuemann algebras. Since Molnar [21] and

David [8] did not investigate properties of local automorphisms of com-
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mutative Banach algebras hence we have showed that local automorphism

of commutative Banach algebras is inner.

2.3 Norm Preserver Problems

Osamu, Takeshi and Hiroyuki [24] established the multiplicative norm

preserver maps between invertible groups of commutative Banach alge-

bras and showed that C∗-algebras are isomorphic and they are norm pre-

serving groups isomorphisms between group of algebras. In [24], it was

established that the injective map T preserves the norm as illustrated by

example below:

Example 2.6 (24, Example 3.6). Let C(X) be Banach algebra of complex

valued continuous functions on a compact Hausdorff space X and A =

C(X)⊕C(X). Let A be isometrically isomorphic to C(X1∪X2) where X1

and X2 are two copies of X. Let T be a map from A−1 into itself defined

by; T (f ⊕ g) = f2g
|fg| ⊕

f3g2

|f3g| for f ⊕ g ∈ A. Then T is a norm preserving

group automorphism on A−1 while T is not extended to linear map on A.

From Example 2.6, Osamu, Takeshi and Hiroyuki [24] used direct sum to

determine the norm preserving group automorphism of A−1 but they did

not consider if the map T preserves the norms of local automorphism of

commutative Banach algebra. In our study, we have used tensor products

to investigate properties of local automorphism of commutative Banach

algebras and established its norm preserver conditions.

Takashi [34], also characterized the commutativity of unital Banach alge-

bras A over a complex space C using the norm inequalities and gave the
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theorem below:

Theorem 2.7 (34, Theorem 1). Let A be a unital Banach algebra over

a complex space C with the norm ‖.‖. If there is a norm ‖.‖ on S and

positive constants γ, κ such that ‖S‖ ≤ κ‖S‖‖ST‖ ≤ γ‖TS‖ for all S, T ∈

A, then A is commutative, that is ST = TS for all S, T ∈ A.

In Theorem 2.7, Takashi worked on commutativity using norm inequali-

ties with similarity in transformation but did not established the norms

of local automorphisms of commutative Banach algebras. We have de-

termined the norms of local automorphisms of commutative Banach al-

gebras.

A norm preserving condition has been done by Hosseini and Sady [13],

that if we have two Hausdorff spaces say X and Y and two Banach spaces

A and B, then a map T : A→ B preserves multiplicatively norm on the

range if ‖fg‖X = ‖TfTg‖Y holds for all f, g ∈ A, hence the multiplica-

tively spectrum preserving map between two Banach algebras are defined.

The results of the study are outlined in the theorem below.

Theorem 2.8 (13, Theorem 2.3). If T : A −→ B is a surjective multi-

plicatively range preserving map, then there is a homeomorphism ϕ from

Xonto Y such that for each x ∈ X and f ∈ A then ‖f‖[x] = ‖Tf‖ϕ[x].

Moreover, if the points in c(A) and c(B) are all strong boundary points,

then T has the following representation Tf(y) = h(y)f(ϕ(y)) (f ∈ A, y ∈

c(B)), where h is a continuous complex-valued function on c(B) and is a

homeomorphism from c(B) onto c(A).

Hosseini and Sady [13], showed that T is surjective and preserves the

norm however they did not explain norm preserver condition for local au-
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tomorphism of commutative Banach algebras and so we established norm

preserver conditions for local automorphisms of commutative Banach al-

gebras.

Emeka [16] tackled spectral preserver problems of linear mapping of Ba-

nach algebra. The results showed that a surjective spectrum preserv-

ing linear map between Von Neumann algebra is also a Jordan homo-

morphism and a surjective spectral isometry between finite dimensional

semi-simple Banach algebra is a Jordan Isomorphism and the following

two theorems gives explicit results:

Theorem 2.9 (16, Theorem 3.1). Let A and B be von Neumann algebras,

and let Ψ : A −→ B be a surjective, spectrum preserving linear map. Then

Ψ is a Jordan isomorphism.

Theorem 2.10 (16, Theorem 3.2). Let A and B be von semi-simple Ba-

nach algebras, and let Ψ : A −→ B be a surjective, spectral isometry.

Then Ψ : A −→ B is a Banach Space isomorphism

Emeka [16] focused on linear mapping between Banach algebra that pre-

serve spectral properties but he did not looked into norm preserver condi-

tions for local automorphism of commutative Banach algebra and hence

we have determined norms of local automorphisms of commutative Ba-

nach algebra.

Studies on norms of inner derivations has been done in [5]. Baraa and

Boumazgour [5] gave necessary and sufficient conditions when norm of the

sum of two operators A,B ∈ B(H) on Hilbert space H is equal to the sum

of their norms that is ‖A+B‖ = ‖A‖+‖B‖ but they did not characterized

norms of local automorphisms of commutative Banach algebras. In this
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thesis, we have showed that the norms of local automorphisms of commu-

tative Banach algebras the preserve additivity; ‖φ(x)+φ(y)‖ = ‖x‖+‖y‖.

Studies on norm preserver has been done by Tonev and Rebekah [28].

They provided sufficient conditions for norm-linear and norm-additive

operators between uniform algebras which are isometric algebra isomor-

phisms. The results obtained are as follows:

Lemma 2.11 (28, Lemma 12). If T : A → B is norm additive operator

and f, g ∈ A, then

(i). T is norm preserving

(ii). T preserves the distances, i.e ‖Tf − Tg‖ = ‖f − g‖

In [28], they considered norm preserver conditions for uniform algebras

but not the norm preserver conditions for local automorphisms of com-

mutative Banach algebras. Therefore, in this work we have established

the norm preserver conditions for local automorphisms of commutative

Banach algebras.

Bonyo and Agure [6], studied norms of inner derivations on norm ideals

and established the inequalities between the diameter of numerical range

and norms of inner derivations as seen in the theorem below:

Theorem 2.12 (6, Theorem 3.2). . Let A ∈ B(H) be S-universal, then

diam(W (A)) = 2‖A‖

In the above study, they applied the concepts of S-universal to the theory

of inner derivations. In our study we have applied the concept in Theo-

rem 2.12 to determine the norms of local automorphisms of commutative
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Banach algebras and ‖φx(y)‖ = 2‖y‖ holds.

In conclusion, a lot has been done on preserver problems for example

linear, spectral, order and rank preserver problems on uniform algebras,

matrix algebras and Banach algebras but norm preserving condition for

local automorphism of commutative Banach algebras has not been con-

sidered. Therefore, in this study we have investigated properties of local

automorphisms of commutative Banach algebras and determined their

norms . Moreover, we have determined their norm preserving conditions

for local automorphism of commutative Banach algebras.
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Chapter 3

LOCAL AUTOMORPHISMS

3.1 Introduction

Let H be an infinite dimensional complex Hilbert space and B(H) the

set of all bounded linear operators on H. In this chapter, we investigate

properties of local automorphisms of commutative Banach algebras.

3.2 Properties of Local Automorphisms

Lemma 3.1. Let H be an infinite dimensional complex Hilbert space

and B(H) the set of all bounded linear operators on H, then every local

automorphism of B(H) is an automorphism.

Proof. : From [2], we have for non-zero x, y ∈ H then x⊗y denote a rank

one operator defined by (x⊗ y)z = 〈z, y〉x, z ∈ H. The spectrum of the

operator x ⊗ y is equal to the set {0, 〈x, y〉}. Two operators M,N are

said to be equal if there exist an invertible operator A ∈ B(H) such that
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M = ANA−1. Since every automorphism of B(H) is inner [18], a local

automorphism can also be defined as a linear mapping with the property

that the operators N and φ(N) are similar for every N ∈ B(H). To

complete the proof of Lemma 3.1, we outline the following propositions

which are crucial.

Proposition 3.2 (2, Lemma 2.1). If X and Y are complex normed linear

spaces and A : X → Y is a bijective linear operator such that A−1 carries

closed hyperplanes to closed hyperplanes, then A is bounded. For the proof

see [2].

Proposition 3.3 (2, Lemma 2.2). Let H be an infinite dimensional sep-

arable Hilbert space and let φ be a local automorphism of B(H). Then

the restriction of φ to F (H) is either a homomorphism or antihomomor-

phism. For the proof see [2].

Proposition 3.4 (2, Lemma 2.3). Let H be an infinite dimensional sep-

arable Hilbert space and let φ be a local automorphism of B(H). Then the

restriction of φ to F (H) is a homomorphism then φ is an automorphism.

For the proof see [2].

Now we complete the proof of Lemma 3.1. We know by Proposition 3.3,

that the restriction of φ to F (H) is either a homomorphism or an antiho-

morphism. In view of Proposition 3.4, it is sufficient enough to consider

the situation when φ | F (H) = Ψ is an antihomomorphism. But then,

as ψ maps F (H) into itself φ2 | F (H) = ψ2 is homomorphism and by

definition of local automorphism φ is an automorphism. In particular, φ2

is onto, which implies that φ is also an automorphism. Thus, φ satisfies
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the requirements of Larison and Sourour [18]. Hence φ is an automor-

phism.

Lemma 3.5. Let H be an infinite dimensional complex Hilbert space

and B(H) the set of all bounded linear operators H, then every local

automorphism of B(H) is linear.

Proof. Let H
′

denote the dual spaces of infinite dimensional separable

complex Hilbert space H. For non-zero x ∈ H and y ∈ H
′
, we denote

x ⊗ y ∈ F (H) a rank one operator defined by (x ⊗ y)z = y(z)x for all

z ∈ H. Let A ∈ B(H) be any bounded bijective linear operator. Since

we know that two operators M and N are equal if M = ANA−1 and

from definition of local automorphism φ(x) = φx(x), then y(A−1)x =

(My)(φ(A)−1Nx) = φ(M(y)A−1N(x)) = φ(MN)(yA−1x) φ(MN) = I

where I is the identity, it follows that y(A−1x) = (yA−1x)

Lemma 3.6. Let H be an infinite dimensional complex Hilbert space

and B(H) the set of all bounded linear operators H, then every local

automorphism of B(H) is bounded.

Proof. Let φ : B(H) → B(H) be a local automorphism. From the def-

inition of boundedness, φ is said to be bounded if there exist a scalar

k > 0 such that ‖φ(x)‖ ≤ k‖x‖,∀x ∈ B(H). Recall that local automor-

phism φ(x) is defined by φ(x) = φx(x). Let k be any constant, then it

is easy to see that ‖φ(kx)‖ = ‖φx(kx)‖ ≤ ‖kφx(x)‖ = k‖φx(x)‖. Let

φx(x) = p,∀ p ∈ B(H), then ‖φx(x)‖ ≤ k‖p‖
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Lemma 3.7. Let H be an infinite dimensional complex Hilbert space

and B(H) the set of all bounded linear operators H, then every local

automorphism of B(H) is continous.

Proof. For the proof of Lemma 3.7, we give analogous proof of Molnar

[22, Lemma 3.1.4]. To establish continuity, we show that there exist a

projection (self-adjoint idempotents) P ∈ B(H) with infinite rank and

infinite corank for which the mapping N 7→ φ(PNP ) is continous. Sup-

pose that φ 6= 0, from [11, Theorem 3 ] we have every Jordan ideal of

B(H) is an associative ideal and from [9, Lemma 2.1], if we let φ be linear

mapping from H into an H-bimodule then:

1. (I−P )φ(PRQ)(I−Q) = 0 for everyR ∈ B(H) and any idempotents

P,Q ∈ B(H).

2. The mapping φ satisfies φ(PRQ) = φ(PR)Q+Pφ(RQ)−Pφ(R)Q

for every R ∈ B(H) and idempotents P,Q ∈ B(H).

For proof of above statements 1 and 2 see [9] and the same holds for the

kernel Kerφ.

Let Pk be an infinite dimensional projection, if φ(P ) = 0 then using the

ideal property of Kerφ we obtain that I ∈ Kerφ yielding Kerφ = B(H)

which contradicts φ(P ) 6= 0. Let Pk be a sequence of pairwise orthogonal

infinite dimensional projections, we assert that there exist k ∈ N for

which the linear operator N 7→ φ(PkNPk) is bounded. Assume that

for any k ∈ N there is an operator Nk ∈ N such that ‖Nk‖ = 1 and

‖φ(PkNPk)‖ ≥ k2k‖φ(Pk)‖2. Define N =
∑

k
1
2k
PkNPk and we obtain
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N ∈ B(H) then,

‖φ(Pk)‖2‖φ(N)‖ ≥ ‖φ(Pk)φ(N)φ(Pk)‖

= ‖φ(PkNPk)‖

=
1

2k
‖φ(PkNPk)‖

= k‖φ(Pk)‖2

since ‖φ(Pk)‖ 6= 0 and the inequality above holds for every k ∈ N hence we

arrive at the contradiction. Now we obtain a projection P ∈ B(H) with

infinite rank and infinite corank for which the mapping N 7→ φ(PNP ) is

continous.

Let P = Σ∞k=1ak ⊗ ak where ak is an orthonormal sequence. Let bk be an

orthonormal sequence in R which extends to ak.

Consider

A = Σkbk ⊗ ak (3.2.1)

and

B = Σkak ⊗ bk (3.2.2)

it follows that APB = I and BPA = Q which is a projection with an

infinite dimensional range. Since

φ(NQ) = φ(APBNBPA) = φ(A)φ(P (BNB)P )φA

and the mapping N 7→ φ(P (BNB)P ) continous [22]. We obtain the

continuity of the transformation N 7→ φ(NQ) similarly the argument

gives the same property for the mapping N 7→ φ(QN). Therefore with
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the notation Q⊥ = I −Q we have continuity of linear mapping

N 7→ φ((QN)Q) = φ(QNQ)

N 7→ φ((Q⊥N)Q) = φ(Q⊥NQ)

N 7→ φ(Q(NQ⊥)) = φ(QNQ⊥)

Let Q = Σ∞k=1a
′
k ⊗ a′k be with orthonormal sequences (a′k). Extend (b′k)

to a complete orthonormal sequences in H and define

R = Σkb
′
k ⊗ a′k + Σka

′
k ⊗ b′k

Plainly RQR = Q⊥ and the mapping

N 7→ φ(Q⊥NQ⊥) = φ(RQRNRQR)

= φ(R)φ(Q(RNR)Q)φ(R)

is continous. Finally since

φ(N) = φ(QNQ) + φ(QNQ⊥) + φ(Q⊥NQ) + φ(Q⊥NQ⊥); ∀N ∈ B(H).

Hence we obtain a contradiction of φ.

Theorem 3.8. Let H be an infinite dimensional complex Hilbert space

and B(H) the set of all bounded linear operators H, then the group of

every local automorphism of B(H) is algebraically reflexive.

Proof. To prove the above theorem we need to outline the following propo-
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sitions.

Proposition 3.9 (23, Proposition 2.2). Let A,B ⊂ B(H) be closed ∗-

subalgebras and suppose for every self-adjoint elements A ∈ A the spectral

measure of any any Borel subset of σ(A) is bounded away from 0 belongs

to A. If φ : A → B is continous linear map which sends projections to

idempotents, then φ is a Jordan homomorphism. [ For proof see 23]

Proposition 3.10 (10, Lemma 1). Let φ : A → B be a linear map

where A,B ⊂ B(H). Suppose φ is a local isomorphism in the sense

that for every x ∈ A there exist an isomorphism ψ : A → B such that

φ(x) = ψ(x) then φ is an injective homomorphism. For proof see [10].

To complete the proof of Theorem 3.8, let φ be a local automorphism of

A and ψ be an automorphism such that φ(x) = ψ(x) whenever x ∈ {0, 1}

is identity. We claim that φ = ψ, since by Proposition 3.10, φ and ψ are

weakly continous. It follows by Lemma 3.1, 3.5 and 3.7, that every local

automorphism of B(H) is an automorphism, linear and continous and

φ(N) = N◦Π = ψ(N) for anyN ∈ B(H) where Π = φ(x) = ψ(x). Finally

by Proposition 3.9, the spectral measure of any borel subset of σ(A) is

bounded away from 0 belongs to A thus the group of local automorphism

is algebraically reflexive.

Theorem 3.11. Let H be an infinite dimensional complex Hilbert space

and B(H) the set of all bounded linear operators H, then every local

automorphism of B(H) is inner.

Proof. The following Proposition is helpful in our proof.
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Proposition 3.12. Every non-trivial ideal of B(H) is selfadjoint, con-

tains ideal F (H) and is contained in the ideal of compact operators [21].

In this proof we are considering subalgebras containing ideal of finite rank

operators F (H). We know that all commutative Banach algebras have

the right and left ideal coincide. By [6], a symmetric norm ideal (I, ‖.‖) in

B(H) consist of two-sided ideal I together with the norm ‖I‖ = ‖F (H)‖

for F (H) a rank one operator.

Now we complete the proof of Theorem 3.11. Suppose that I is non-

trivial ideal in B(H), then by Lemma 3.1 every local automorphism is an

automorphism. Let A ⊂ B(H) be such that for every M ∈ I and there is

NM ∈ I for which MA−AM = MNM−NMM . Considering this relation

for M∗ and by Definition 1.18, we take the adjoints hence MA∗−A∗M =

MN∗M∗ − N∗M∗M . Consequently the equations of self adjoint operators

Re(A) and Im(A) induces a local automorphism on ideal I. It follows

from Proposition 3.12 that A is self-adjoint. By the Weyl-Von Neumann

theorem there are complete orthonormal system {an}n ∈ N, a bounded

sequence {bn}n ∈ N of real numbers and compact self adjoint operators

K such that A = Σ∞n=1bnan ⊗ an +K.

Since I 6= F (H), I must contain an operator with infinite dimensional

range. Let M 7→MA−AM for A ∈ B(H). Since there is compact N for

which M(AK)− (A−K)M = MN −NM then it implies that (bn)n ∈ N

converges to real b.

Let A
′

= A − bI which is compact self-adjoint operators inducing inner

automorphism as A does. Suppose that A is compact, from equation

3.2.1, A can be written in the form A = Σ∞n=1λnan⊗an, where λ→ 0 and
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{an}n ∈ N is a complete orthonormal system. Let M ∈ I and N ∈ I

such that MA − AM = MN − NM . From Lemma 3.1 x ⊗ y = 〈x, y〉

then we can also define λn = 〈Nan, an〉; (n ∈ N)

If N = Σk=1ancn ⊗ cn is a complete orthonormal system of N then,

〈Nan, an〉 = Σkdk〈an, ck〉〈ck, an〉 since

Σk|〈an, ck〉||〈ck, an〉| ≤ ‖an‖2 = 1

Σn|〈an, ck〉||〈ck, an〉| ≤ ‖ck‖ck‖ ≤ 1

Furthermore since A is also an ideal it follows that A = I.

Theorem 3.13. Let φ : B(H) → B(H) be a local automorphism, then

there exist a projection Q ∈ B(H) such that for any family Xn of pair-

wise orthogonal rank one projections the sequence Σn
i=1φ(Xn) converges

strongly to Q(x).

Proof. Two idempotents P,Q ∈ B(H) are algebraically orthogonal if

PQ = QP = 0 holds true. We know that φ is a local automorphism

that maps idempotents to idempotents and preserve orthogonality be-

tween them . If P and Q are orthogonal idempotents then we have

0 = φ(PQ + QP ) = φ(P )φ(Q) + φ(Q)φ(P ) which implies that there

is orthogonality between φ(P ) and φ(Q).

Let Xn be a maximal family of pairwise orthogonal rank one projection

in B(H) which is necessarily closed maximal proper two sided proper

ideal. Let Fn = Σn
1φ(Xn) and define E as the idempotent having R =

Span{RanFn : n ∈ N} and KerK = ∩KerFn. We need to show that

R ∩ K = {0}. Let (fn) be a sequence in Span{RanFn : n ∈ N} which

converges to r ∈ K. By Lemma 3.6, we know φ is bounded. Let M
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denote the norm of φ. For every ε > 0 there exist an index n0 ∈ N such

that ‖r − fn‖ < ε
M

(n ≥ n0). We can see that RanFn is monotone in-

creasing sequence of subspaces of B(H). Therefore (fn) is in the range of

an idempotent Fk while r is in its KerFk which implies that

‖0− fn‖ = ‖Fkr − Fkfn‖

≤ ‖Fk‖‖r − fn‖

= ‖φ(Σk
i=1)‖‖r − fn‖

= M‖r − fn‖ < ε

for every n ∈ N. Thus fn → 0 and we have r = 0. This gives us that

R ∩K = {0}.

We also see that Fnh → En whenever h ∈ Span{RanFn : n ∈ N} or

h ∈ KerK. So as Fn is bounded using Banach-Steinhaus theorem, we

get that Fn converges strongly to E. Furthermore, the involved oper-

ators φ(P ), φ(Q) are idempotents and algebraic arguments proves that

φ(P )φ(Q) = φ(Q)φ(P ) holds for all n ∈ N. By spectral theorem of self-

adjoint operators and continuity of φ, E commutes with the range and

hence Q = E. Hence s− limXn → Q.
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Chapter 4

NORM PRESERVING

CONDITIONS

4.1 Introduction

Most of the preserver problems have been on linear preserver problems

in matrix algebras, spectrum preserver or subset of spectra algebra pre-

server and norms preservers on uniform algebras and Banach algebras.

In this chapter, we present results on norm preserver conditions for local

automorphisms of commutative Banach algebras B.

4.2 Conditions preserving norms

Since our work is in commutative Banach algebras. We give conditions

that preserve norm with respect to additivity, multiplicativity and iden-

tity.
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Theorem 4.1 (27, Theorem 5.0.8). A mapping T : A→ B between uni-

form algebras preserve the peaking functions of algebra that is T (P (A)) =

P (B) satisfying the equation ‖TfTg‖ = ‖fg‖ for every f, g ∈ A if

and only if there exist a homomorphism ψ : σ(B) → σ(A) such that

|Tf(y)| = |fψ(g)| for every f ∈ A and y ∈ σ(B).

Lemma 4.2. Let B be a commutative Banach algebra and φ : B → B be

a local automorphism. Then ‖φ(x) + φ(y)‖ = ‖x‖+ ‖y‖ for all x, y ∈ B.

Proof. Let A be a commutative Banach sub-algebra B. Let φ : B → B

be a local automorphism. By Hahn-Banach extension Theorem, there is

a continued extension of φ : A → A so that for all x, y ∈ A there exist a

peaking function φ(x) with supremum norm defined by:

‖φ(x)‖ = sup‖x‖=1

{
‖φ(x)‖
‖x‖ , x ∈ A

}
.

Now, we show that ‖φ(x)‖+ ‖φ(y)‖ = ‖x‖+ ‖y‖.

Indeed,

‖φ(x) + φ(y)‖ = sup
‖x‖=1,‖y‖=1

{‖φ(x) + φ(y)‖; x, y ∈ A}

= sup
‖x‖=1,‖y‖=1

{‖φ(x)‖+ ‖φ(y)‖; x, y ∈ A}

≤ sup
‖x‖=1

{‖φ(x)‖; x ∈ A}+ sup
‖y‖=1

{‖φ(y)‖; y ∈ A}

= ‖φ(x)‖+ ‖φ(y)‖.

The reverse inequality is trivial since norm is nonnegative. But by [27,

Proposition 4.0.9] ‖φ(x) + φ(y)‖ = |φ(x)‖+ ‖φ(y)‖ = ‖x‖+ ‖y‖,

iff ‖φ‖ = 1.

Corollary 4.3. Let B be a commutative Banach algebra and φ : B → B

be a local automorphism, then φ : B → B is norm-additive if ‖αφ(x) +
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βφ(y)‖ = |α‖x‖+ |β|‖y‖ for all x, y ∈ A and α, β ∈ K with |α| = |β| = 1.

Proof. We show that linearity is preserved in norm additive of local au-

tomorphisms. For all x, y ∈ A and α, β ∈ K with |α| = |β| = 1.

Then we have,

‖αφ(x) + βφ(y)‖ = sup
‖x‖=1,‖y‖=1

{
‖φα(x)

‖x‖
+
φβ(y)

‖y‖
‖, x, y ∈ A

}
≤ |α| sup

‖x‖=1

{
‖φ(x)‖
‖x‖

, x ∈ A
}

+ |β| sup
‖y‖=1

{
|β|‖φ(y)‖
‖y‖

, y ∈ A
}

= |α|‖φ(x)‖+ |β|‖φ(y)‖ α, β ∈ K, x, y ∈ A

iff ∀α, β ∈ K, |α| = |β| = 1 and x, y ∈ A.

The reverse inequality holds since norm is nonnegative.

Example 4.4 (27, Example 23). An operator φ : B → B for which

φ(x) = ix is norm additive in modulus because ‖|φ(x)|+ |φ(y)|‖ = ‖|ix|+

|iy|‖ = |i|‖|x| + |y|‖ = ‖|x| + |y|‖. The operator φ : B → B for which

φ(x) = −x is similarly norm additive. In fact all operators φ : B → B

such that φ(x) = αx with α ∈ K and |α(x)| = 1 for every x ∈ A and norm

additive since ‖|φ(x)|+|φ(y)|‖ = ‖|αx|+|αy|‖ = |α‖x||+|y|‖ = ‖|x|+|y|‖.

Example 4.5 (27, Example 24 ). The operator φ : B → B defined by

φ(x) = ‖x‖, ∀x ∈ A is also norm additive in modulus i.e

‖|φ(x)|+ |φ(y)|‖ = ‖|x|‖+ ‖|y|‖ = ‖|x|+ |y|‖.

We note that the operator φ does not preserve |x| unless it is a constant

function.
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Lemma 4.6. Let B be a commutative Banach algebra and φ : B → B be

a local automorphism, then ‖φ(xy)‖ = |x|‖φ(y)‖ if x is a scalar operator.

Proof. Let k be a peaking constant function on commutative Banach

algebra B such that φ(x) = k then φ is a norm preserver i.e

‖φ(x)‖ = ‖x‖ = |k| it follows that when |k| > 0 we have

‖φ(xy)‖ = sup
‖x‖=1, ‖y‖=1

{
‖φ(x)‖
‖x‖

‖φ(y)‖
‖y‖

, x, y ∈ A
}

= sup
‖x‖=1

{
‖φ(x)‖
‖x‖

, x ∈ A
}

sup
‖y‖=1

{
‖φ(y)‖
‖y‖

, y ∈ A
}

= |k| sup
‖x‖=1

{
‖φ(y)‖
‖y‖

, y ∈ A
}

= ‖x‖‖φ(y)‖, iff ‖x‖ = |k| = |x|

= |x|‖φ(y)‖.

Hence ‖φ(xy)‖ = |x|‖φ(y)‖ if and only if x is a scalar operator

Lemma 4.7. Let φ : B → B be a local automorphism, then for all

α, β ∈ K and x, y ∈ B the following hold.

(i) ‖αφ(x)‖ = |α|.

(ii) ‖φ(I)2‖ = 1.

Proof. Part (i) we use supremum norm

‖αφ(x)‖ = sup
‖x‖=1

{
‖αφ(x)‖
‖x‖

, x ∈ A
}

= |α| sup
‖x‖=1

{
‖φ(x)‖
‖x‖

, x ∈ A
}

= |α|‖φ(x)‖.
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For peaking functions [28, Lemma 12] we have ‖φ(x)‖ = ‖x‖ and [30,

Proposition 2.22] ‖φ(x)‖ = 1 holds hence ‖φ(x)‖ = ‖x‖ = 1. Therefore

it follows that ‖αφ(x)‖ = |α|

For the second part (ii) ‖φ(I)2‖ = 1. We know that φ(I) = 1 and by

Gelfand-transform [30, Theorem 2.25], φ preserves multiplication that is

φ(a)φ(b) = φ(a)φ(b). Suppose that a = b then φ(ab) = φ(aa) = φ(a)2

but when a = I then φ(I)2 = φ(I.I) = φ(I)φ(I) = 1 but ‖φ(I)‖ = 1 then

‖φ(I)2‖ = 1.1 = 1.

4.3 Norms of local Automorphisms

In this section, we determine norms of local automorphisms. In partic-

ular, we determine norms of special cases of local automorphisms and

generalized automorphisms.

Lemma 4.8. Let φ : B → B be defined by φx(y) = xy − yx then

‖φx(y)‖ = 2‖y‖.

Proof. Let A ⊂ B. The inner automorphism induced by x fixed in A is

the operator φx(y) defined by φx(y) = xy−yx, ∀y ∈ A. By Stampfli [14],

the norm of inner derivation is computed as ‖φx(y)‖ = 2‖y‖. Consider

x ⊗ I ∈ A ⊗ A where I ∈ A and ‖x ⊗ I‖CB = ‖x‖‖I‖ = ‖x‖ . Define

‖φ(x)‖ = supx⊗I∈A⊗A, ‖x⊗I‖=‖x‖ {‖x⊗ I − I ⊗ x‖.}
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Now,

‖φx(y)‖ = sup
x⊗y∈A⊗A, ‖x⊗y‖=‖x‖‖y‖

{‖x⊗ y − y ⊗ x‖}

= sup
x⊗y∈A⊗A, ‖x⊗y‖=‖x‖‖y‖

{‖(x− αI)⊗ y − y ⊗ (x− αI)‖, α ∈ K}

= sup
x⊗y∈A⊗A, ‖x⊗y‖=‖x‖‖y‖

{‖(x− αI)⊗ y + [−1(y ⊗ (x− αI))]‖ α ∈ K}

≤ sup
x⊗y∈A⊗A, ‖x⊗y‖=‖x‖‖y‖

{‖(x− αI)⊗ y‖ α ∈ K}+

| − 1| sup
x⊗y∈A⊗A, ‖x⊗y‖=‖x‖‖y‖

{‖y ⊗ (x− αI)‖. α ∈ K}

By [29, Theorem 2 ], we know that a rank one operator x ∈ B satifies the

following condition:

For α ∈ C, then ‖x−αI‖ ≥ sup06=x∈A, ‖x‖=1

{
‖φ(x)‖
‖x‖

}
= ‖x‖ holds. Hence,

sup
x⊗y∈A⊗A, ‖x⊗y‖=‖x‖‖y‖

{‖(x− αI)⊗ y‖ α ∈ K} = ‖x‖‖y‖

and

| − 1| sup
x⊗y∈A⊗A, ‖x⊗y‖=‖x‖‖y‖

{‖y ⊗ (x− αI)‖ α ∈ K} = ‖y‖‖x‖.(4.3.1)

‖φx(y)‖ = ‖x‖‖y‖+‖y‖‖x‖ and by Lemma 4.7 we have ‖φ(x)‖ = ‖x‖ = 1.

It follows that ‖φx(y)‖ = ‖x‖‖y‖+ ‖y‖‖x‖ = ‖y‖+ ‖y‖ = 2‖y‖.

Theorem 4.9. Let φ : B → B be defined by φx,z(y) = xy − yz then

‖φx,z(y)‖ = ‖x‖+ ‖z‖, iff ‖y‖ = 1.

Proof. Let A be a commutative Banach sub-algebra of B and x⊗ I, y⊗ I
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and z ⊗ I ∈ A⊗ A. For φx,z(y) = xy − yz, we have

‖φx,z(y)‖ = sup
y⊗I∈A⊗A, ‖y⊗I‖=‖y‖

{‖x⊗ y − y ⊗ z‖}

= sup
y⊗I∈A⊗A, ‖y⊗I‖=‖y‖

{‖x⊗ (y − αI)− (y − αI)⊗ z‖, α ∈ K}

= sup
y⊗I∈A⊗A, ‖y⊗I‖=‖y‖

{‖x⊗ (y − αI) + [−1((y − αI)⊗ z)]‖, α ∈ K}

≤ sup
y⊗I∈A⊗A, ‖y⊗I‖=‖y‖

{‖x⊗ (y − αI)‖, α ∈ K}

+ | − 1| sup
y⊗I∈A⊗A, ‖y⊗I‖=‖y‖

{‖(y − αI)⊗ z‖, α ∈ K}

By Lemma 4.8, Equation 4.3.1 and nonnegativity of the norm, it follows

that

‖φx,z(y)‖ = ‖y‖‖x‖+ ‖y‖‖z‖

= ‖x‖+ ‖z‖, iff ‖y‖ = 1

Theorem 4.10. Let A be sub-algebra of commutative Banach algebra

B. Let φ : A ⊗ A → B be an inner automorphism defined by φa(b) =

ab − ba. Let c ∈ A be unique orthogonal projection and φc(b) = cb − bc

then ‖φa(b)‖ = ‖φc(b)‖ = 2‖b‖.

Proof. Consider a⊗ I, b⊗ I ∈ B⊗B and c⊗ I ∈ A⊗A. Let ‖a⊗ I‖CB =

‖a‖‖I‖ = ‖a‖, ‖b⊗ I‖CB = ‖b‖‖I‖ = ‖b‖ and ‖c⊗ I‖CB = ‖c‖‖I‖ = ‖c‖.

Then by [19, Theorem 4.3] and the parallelogram identity we show the

uniqueness of c ∈ A in which it is sufficient to see that

‖a⊗ I + b⊗ I‖2 + ‖a⊗ I − b⊗ I‖2 = 2‖a‖2 + 2‖b‖2 (4.3.2)
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for all a⊗ I, b⊗ I ∈ B ⊗B holds.

Now, we show that for all c ⊗ I ∈ A ⊗ A and the following statements

hold.

(i). ‖a⊗ I − b⊗ I‖ = ‖a⊗ I − c⊗ I‖

(ii). 〈a⊗ I − b⊗ I, c⊗ I〉 = 0

For part (i) let α = supc⊗I∈A⊗A, {‖a⊗ I − c⊗ I‖, ‖c⊗ I‖ = ‖c‖} and

from [12, Lemma 1] and [12, Corollary 1], we choose a family of pairwise

orthogonal projections Pn ∈ A so that ‖a⊗ I − Pn‖ → α. We show that

Pn is a cauchy sequence. Hence for n,m ∈ K we have the parallelogram

identity (4.3.2)

‖(a⊗ I − Pn) + (a⊗ I − Pm)‖2 + ‖(a⊗ I − Pn)− (a⊗ I − Pm)‖2 =

2‖(a⊗ I − Pn)‖2 + 2‖(a⊗ I − Pm)‖2.

Consequently,

‖Pn − Pm‖2 = 2‖a⊗ I − Pn‖2 + 2‖a⊗ I − Pm‖2 − 4‖a⊗ I − Pn + Pm
2

‖2

Taking into account Pn+Pm

2
∈ A, we have

‖Pn − Pm‖2 = 2‖a⊗ I − Pn‖2 + 2‖a⊗ I − Pm‖2 − 4α2

so that ‖Pn − Pm‖ → 0 as n,m → ∞ thus Pn is cauchy sequence and

since B is complete and A⊗ A ⊂ B its convergent to b⊗ I ∈ A⊗ A.

Since ‖a⊗ I − Pn‖ → ‖a⊗ I − b⊗ I‖, we have that ‖a⊗ I − b⊗ I‖ = α.
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Indeed uniqueness also follows by parallelogram identity,

‖b⊗ I − d⊗ I‖2 ≤ 2‖a⊗ I − b⊗ I‖2 + 2‖a⊗ I − d⊗ I‖2

− 4‖a⊗ I − a⊗ I + d⊗ I
2

‖2

≤ 2α2 + 2α2 − 4α2 = 0

where b⊗ I, d⊗ I ∈ A⊗ A.

For part (ii) we adopt analogous proof of [19, Proposition 4.1]. We define

F (β) = ‖a⊗ I − b⊗ I, βc⊗ I‖2

= |β|‖c⊗ I‖2 − 2β〈a⊗ I − b⊗ I, c⊗ I〉

+ ‖a⊗ I − b⊗ I‖, ∀β ∈ K

but when β = 0 then F (β) = 〈a ⊗ I − b ⊗ I, c ⊗ I〉 = 0 holds for all

c⊗ I ∈ A⊗ A.

Hence

‖a⊗ I − b⊗ I − c⊗ I‖2 = ‖c⊗ I‖2 + ‖a⊗ I − b⊗ I‖2

≥ ‖a⊗ I − b⊗ I‖2

Since c ∈ A. By Lemma 4.8, then ‖φa(b)‖ = 2‖b‖ and ‖φc(b)‖ = 2‖b‖

holds. Therefore ‖φa(b)‖ = ‖φc(b)‖ = 2‖b‖.
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

In this last chapter, we draw conclusions and make recommendations

based on the stated objectives of the study and the results.

5.2 Conclusion

The study of norm preserver conditions is an extensive area in operator

algebras. In the study, we have outlined the basic concepts and some fun-

damental techniques used to solve the stated objectives in chapter one.

In chapter two, we have outlined related literature on automorphisms and

norm preserver problems on Banach algebras. In chapter three, we have

investigated properties of local automorphisms of commutative Banach

algebras with respect to the first objective. We have showed that every
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local automorphism on B(H) is an automorphism, linear, bounded, inner

and continous. Moreover, the group of local automorphisms are alge-

braically reflexive. In chapter four, we have established norm preserver

conditions for local automorphism of commutative Banach algebras which

includes; ‖φ(x) + φ(y)‖ = ‖x‖ + ‖y‖, ‖αφ(x) + βφ(y)‖ = ‖α(x) + β(y)‖

for all x, y ∈ A and α, β ∈ K with |α| = |β| = 1, ‖φ(xy)‖ = |x|‖φ(y)‖

if x is a scalar operator, ‖αφ(x)‖ = |α| and ‖φ(I)2‖ = 1. In our third

objective we have determined the norms of local automorphism and the

results are: ‖φx(y)‖ = 2‖y‖, ‖φx,z(y)‖ = ‖x‖ + ‖z‖ iff ‖y‖ = 1 and

‖φa(b)‖ = ‖φc(b)‖ = 2‖b‖ iff c is an orthogonal projection on A.

5.3 Recommendation

Local automorphisms of commutative Banach algebras plays a key role

in operator algebras in describing two observable physical quantities in

quantum mechanics especially for normal operators. We have established

the norm preserver conditions for local automorphisms of commutative

Banach algebra. However, we recommend further research on norm pre-

serving conditions for local automorphisms with denseness, limit conver-

gence and separability in commutative Banach algebras may pursued by

other researchers, to establish whether our results holds in commutative

Banach algebras with these properties.
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