JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE \& TECHNOLOGY SCHOOL OF HEALTH SCIENCES

MPH

END SEMESTER EXAMINATION
HES 5112: DEMOGRAPHY AND HEALTH
December 2013

TIME ALLOWED: $\mathbf{2}$ hours 30 minutes.

Note: Answer question one and any other three questions

QUESTION 1 (COMPULSORY)

The table below shows data from the Ukraine in 1984.

Age group	Births	Women (15-49yrs)	ASFR
$15-19$	43,807	$1,230,396$	
$20-24$	257,872	$1,390,077$	
$25-29$	236,088	$1,653,188$	
$30-34$	115,566	$1,608,925$	
$35-39$	38,450	$1,241,967$	
$40-44$	6,627	941,963	
$45-49$	1,600	630,000	

a) Briefly, explain the meaning of "Fertility" in demography. (2 marks)
b) Use the tabulated data to calculate the General Fertility Rate (GFR) per 1,000 women aged 15 - 49. (3 marks)
c) Use the tabulated data to calculate the Age-Specific Fertility Rate (ASFR) per 1,000 women for each of the age groups and populate the ASFR column. (7 marks)
d) Use the data in the table to calculate the Total Fertility Rate (TFR) per 1,000 women in in the Ukraine in 1984. (3 marks)

QUESTION 2

a) In demography, are "Late Fetal Deaths" counted in terms of birth and death events? Briefly, explain your answer. (2 marks)
b) State the most commonly used definition of maternal mortality. (2 marks)
c) Distinguish between Maternal Mortality Ratio and Rate. (2 marks)
d) Calculate the maternal mortality ratio and rate for Egypt in (1990), based on the following data: Egypt, 1990 Births = 4,158,212; Maternal deaths = 343; Women aged 1549 years $=65,624$. (5 marks)
e) List two methods used to derive the probability of dying " q " from mortality rates. (2 marks)
f) List two socio-economic characteristics of a population that may be associated with differential mortality. (2 marks)

QUESTION 3

a) Briefly, distinguish between the following:
i. In-migrant and Immigrant (2 marks)
ii. Out-migrant and Emigrant (2 marks)
iii. Residual method and Cohort-Component method (2 marks)
b) List three techniques of estimating net migration using the Cohort-Component method. (3 marks)
c) Calculate the Crude Net Migration Rate per 1,000 for Tanzania in 1987 based on the following data: Long-term immigrants $=3,925$; Long-term emigrants $=5,330$; Total population = 8,640,000. (4 marks)
d) List the two broad types of migration. (2 marks)

QUESTION 4

a) List two of the most important sources of country level demographic data. (2 marks)
b) Briefly, distinguish between the following:
a. De jure and De facto census (2 marks)
b. Rate and Ratio (2 marks)
c) Infant mortality may be defined as the number of infant deaths in a given year divided by the number of live births in that given year. Is it a true rate as defined? Briefly, explain your answer. (3 marks)
d) Given the following births and infant deaths recorded in Korea in 1967 and 1968:

Year	Birth Cohort	Age (yrs)	Deaths	Births
1967	1967	0	2,893	142,471
1968	1967	0	481	--
1968	1968	0	2,603	138,214
1969	1968	0	302	--

i. Calculate the correct conventional infant mortality rate per 1,000 for 1967 (show your work). (3 marks)
ii. Calculate the correct conventional infant mortality rate per 1,000 for 1968 (show your work). (3 marks)

QUESTION 5

a) Briefly, explain what a "Lexis Diagram" is used for in demography. (4 marks)
b) Briefly, describe how a single life and a cohort of lives are represented on a Lexis diagram (show diagram). (6 marks)
c) Suppose there were 1000 births in 1995 in a given community and of these 90 died before Jan. 1, 1996 and 50 died after Jan. 1, 1996 but before reaching their first birthday. Calculate the cohort probability of death per 1,000 before age 1 (Draw a Lexis diagram to represent the data)? (5 marks)

QUESTION 6

Using the abridged life table for England and Wales females 1985 (below), obtain the following:
a) Value of the Radix $=$? (3 marks)
b) Conditional probability of dying in the interval $[10,14)]$, given survival to age 10 (3 marks)
c) Number of survivors at exact age 20 (their 20th birthday) (3 marks)
d) Number of deaths to the Radix between exact ages [40, 44] (3 marks).
e) Life expectancy at age 5. (3 marks)

Abridged life table: England and Wales, females, 1985

\mathbf{X}	\boldsymbol{N}	${ }_{n} \boldsymbol{q}_{\boldsymbol{x}}$	${ }_{n} \boldsymbol{p}_{\boldsymbol{x}}$	$\boldsymbol{l}_{\boldsymbol{x}}$	${ }_{n} \boldsymbol{d}_{\boldsymbol{x}}$	${ }_{n} \boldsymbol{L}_{\boldsymbol{x}}$	$\boldsymbol{T}_{\boldsymbol{x}}$	$\boldsymbol{e}_{\boldsymbol{x}}$
0	1	0.008252	0.991748	100000	825	99258	7756261	77.563
1	4	0.001630	0.998370	99175	162	396311	7657003	77.207
5	5	0.000905	0.999095	99013	89	494842	7260692	73.331
10	5	0.000935	0.999065	98924	93	494388	6765850	68.394
15	5	0.001409	0.998591	98831	139	493808	6271462	63.456
20	5	0.001534	0.998466	98692	152	493080	5777654	58.542
25	5	0.001818	0.998182	98540	179	492253	5284574	53.629
30	5	0.002826	0.997174	98361	278	491110	4792321	48.722
35	5	0.004410	0.995590	98083	432	489335	4301211	43853
40	5	0.007199	0.992801	97651	693	486523	3811876	39.036
45	5	0.012348	0.987652	96958	1197	481798	3325353	34.297
50	5	0.020831	0.979169	95761	2005	473793	2843555	29.694
55	5	0.035455	0.964545	93756	3324	460470	2369762	25.276
60	5	0.058507	0.941493	90432	5291	438933	1909292	21.113
65	5	0.087310	0.912690	85141	7434	407120	1470359	17.270
70	5	0.139189	0.860811	77707	10816	361495	1063239	13.683
75	5	0.220993	0.779007	66891	14782	297500	701744	10.492
80	5	0.352367	0.647633	52109	18362	214640	404244	7.758
$85+$		1.000000	0.000000	33747	33747	189604	189604	5.618

