JARAMOGI OGINGA ODINGA UNIVERSITY

OF SCIENCE \& TECHNOLOGY

UNIVERSITY EXAMINATIONS 2012/2013

$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER EXAMINATION FOR THE DIPLOMA IN COMMUNITY HEALTH AND DEVELOPMENT

(BUSIA LEARNING CENTRE)

COURSE CODE: SMA 2111
COURSE TITLE: MATHEMATICS
DATE: 12/8/2013
TIME: 2.00-3.30 PM
DURATION: $\mathbf{1 . 3 0}$ HOURS

INSTRUCTIONS

1. This paper consists of TWO sections A and B.
2. Answer Question 1 (Compulsory) and any other 2 questions.
3. Write your answers on the answer booklet provided.

SECTION A: ANSWER ALL QUESTIONS

1. Simplify;

$$
\begin{equation*}
\sqrt{50}+\sqrt{2}-2 \sqrt{18}+\sqrt{ } 8 \tag{3marks}
\end{equation*}
$$

2. Rationalize:

$$
\frac{2+\sqrt{3}}{4+\sqrt{5}}
$$

3. Show the following using the Venn diagrams.

A n B	$(1$ mark $)$
A u B	$(1$ mark $)$
A - B	(1 mark)

ii. Given $S=\{a, b, c, d\}$ and $T=\{f, b, d, g\}$. work out SuT
(2 marks)
4. Simplify:

$$
\frac{(1+x)^{1 / 2}-1 / 2 x(1+x)^{-1 / 2}}{1+x}
$$

(3 marks)

5a) Prove that:

$$
\log _{a} X-\log _{a} Y=\log _{a}(x / y)
$$

b) Solve

$$
\log \frac{a^{2} b^{3}}{100 \sqrt{c}}
$$

6.How many even numbers greater than 2000 can be formed with the digits $1,2,4,8 \ldots \ldots$, if each digit can be used only once in each number.
7. Solve $5 x^{2}-6 x-2=0$ by completing square method.
8. Five letter words are formed from letter of the word TIEGROUP. How many of these words have no repeated letters?

SECTION B: ANSWER ANY TWO QUESTIONS

9. a)Proof De Molvres Theorem (8 marks)
b) By using De Moivres theorem show that:

$$
\tan 3 \sigma=\frac{3 \tan \sigma-\tan ^{3} \sigma}{1-3 \tan ^{2} \sigma}
$$

10. Show that :

$$
a x^{2} \pm b x+c=0 \text { results into } x=-\frac{b+\sqrt{b^{2}-4 a c}}{2 a}
$$

Where $\mathrm{a} \neq$
Hence solve:

$$
30 x^{2}+49 x+20=0 \text { by the above formula. }
$$

11. The table below shows marks scored by 90 pupils in a mathematics test.

CLASS	$\mathbf{5 - 9}$	$\mathbf{1 0 - 1 4}$	$\mathbf{1 5 - 1 9}$	$\mathbf{2 0 - 2 4}$	$\mathbf{2 5 - 2 9}$	$\mathbf{3 0 - 3 4}$	$\mathbf{3 5 - 3 9}$
Σ	2	13	31	23	14	6	1

Find:
i. The mean
ii. The median
iii. The modal class
12. Obtain the first four terms of the expansion $(1+1 / 2 x)^{10}$ in ascending powers of x. Hence find the value of $(1.005)^{10}$ correct to four decimal places.
13. Solve:
$3 \operatorname{Cos} x-4 \sin x=2$ in the domain $0^{\circ}<x<360^{\circ}$.

