JARAMOGI OGIGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF HEALTH SCIENCES
 MPH EXAMINATION

(KISII LEARNING CENTER)
END SEMESTER EXAMINATION
HMP 5114: BIOSTATISTICS

August 2013

TIME ALLOWED: $\mathbf{2}$ hours $\mathbf{3 0}$ minutes.
Note: Answer question one and any other three questions

QUESTION 1 (COMPULSORY)

a) Name three examples of categorical variables ($\mathbf{3}$ Mark)
b) Differentiate between nominal and ordinal variables giving two (2) examples in each case (4 Marks)
c) Distinguish between:
i. Pie chart and histogram (2 Marks)
ii. mode and median (2 Marks)
iii. Student t-test and analysis of variance (2 Marks)
iv. Qualitative and quantitative variables (2 Marks)

QUESTION 2

a) List three (3) examples of measures of variation ($\mathbf{3}$ Marks)
b) Define confidence interval (2 Marks)
c) The following are weights of students in kilograms:

65	72	66	69	72	67	68	73
66	64	74	67	65	69	63	70
67	74	60	70	67	71	70	68
74	67	69	64	70	67	72	69
63	69	67	70	67	66	70	71
75	71	64	67	76	71	77	73
69	75	71	75	64	62	67	66

i. Construct a frequency distribution table (5 Marks)
ii. Calculate:
(a) The arithmetic mean. (1 Mark)
(b) The standard deviation. (4 Marks)

QUESTION 3

a. State two (2) main approaches of classifying variables (2 Marks)
b. Briefly outline types of errors in decision making (6 Marks)
c. Ten measurements of a certain blood component are made by two instruments on 10 samples and the following results are obtained
$\begin{array}{lllllllllll}\text { Sample No. } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
I ${ }^{\text {st }}$ instrument: $\quad 10 \quad 9 \quad 10$ 11 80 $2^{\text {nd }}$ instrument: $\begin{array}{lllllllllll}10 & 11 & 9 & 10 & 9 & 11 & 12 & 8 & 10 & 10\end{array}$
i. Test the difference in the two measurements (7 Marks)

QUESTION 4

a. List three (3) examples of non-parametric test ($\mathbf{3}$ Marks)
b. If the probability of a male birth in a community is 0.52 . Find the probability that in a family of three:
i. All children will be male ($\mathbf{2}$ Marks)
ii. Two of the children will be male ($\mathbf{2}$ Marks)
iii. Atleast one child will be male ($\mathbf{2}$ Marks)
iv. No child will be male ($\mathbf{2}$ Marks)
c. Distinguish between:
i. Binomial probability distribution and the Poisson probability distribution (2 Marks)
ii. Value and variable (2 Marks)

QUESTION 5

a. Define standard error (2 Marks)
b. A chromatographic method is employed in order to determine the percentage impurity contained in dye used in foodstuffs. The error variance of an estimate is known to be 0.8 . Three independent determinations give an average of 4.2%.
i. Calculate the standard error (3 Marks)
ii. Calculate a 95% confidence interval for the true percentage impurity assuming that each estimate is normally distributed ($\mathbf{5}$ Marks)
iii. Comment on the confidence interval obtained above ($\mathbf{2}$ Marks)
c. State three (3) assumption of normal distribution (3 Marks)

QUESTION 6

a. List three (3) discrete probability distributions (3 Marks)
b. An experiment was carried out to compare the effects of 3 different food regimes on lipo- protein levels ($\mathrm{mg} / \mathrm{dl}$) in human infants. If 10 newborn infants were each allocated to the 3 different groups: Human milk (HM) nucleotide supplemented milk formula (NSMF) and milk formula (MF). If the data were as follows:

Infant No:	1	2	3	4	5	6	7	8	9	10
HM:	56	63	45	41	71	60	78	50	68	62
NSMF:	71	57	64	44	73	50	79	67	84	61
MF :	40	48	60	38	28	44	66	22	45	54

i. State the null hypothesis ($\mathbf{2}$ Marks)
ii. Construct analysis of variance table ($\mathbf{8}$ Marks)
iii. Given that the F-distribution table, the tabulated value at 5% at $(2,27)$ degrees of freedom is 3.34. Is there significant effect of level of smoking on the heart rate (2 Marks)

