JOUST

KOSELE

SMA200: CALCULUS II.

QUESTION 1 [30MKS]:[COMPULSORY]:

1. (a) Evaluate the integral (3mks)

$$\int \tan^{-1} x \, dx$$

(b) Evaluate the following integrals:

(i)
$$\int \frac{dx}{4x+5}$$
 (3mks).

(ii)
$$\int \frac{1}{x^2 - 2x + 5} dx$$
 (4mks)

(c) Find the area between the curves $f(y) = (3 - x^2)$ and g(y) = (y+1).(4mks).

(d) Find the intercepts of $f(x) = x^2 - 3x + 2$ and show that f'(x) = 0 at some point between the two curves. (5mks).

(e)Find the volume of the solid formed by revolving the region bounded by $f(x)=(2-x^2)$ and g(x)=1 about the line y=1.(5mks).

(f) Find the arc length of the curve given by $f(x) = \frac{2}{3}x^{1.5} + \frac{1}{x}(6mks)$.

QUESTION 2.[20MKS]:

(a). Find the area of the surface obtained by revolving the curve

 $f(x)=x^3$ on the interval $0 \le x \le 1$ about the x-axis. (7mks).

(b) Evaluate the integral:

 $\int x^2 e^x dx$ (6mks).

(c) Express as the following fractions as a sum of partial fractions:

(i)
$$\frac{x-1}{3x^2-11x+10}$$

(ii)
$$\int \frac{x-1}{3x^2-11x+10} dx$$
 (7mks).

QUESTION 3[20MKS]:

(a) Evaluate the $\lim_{x\to 0} \frac{e^{2x-1}}{x}$ (3mks).

(b) Using the change of variable **t=tan** x; Find $\int \frac{1}{1+\sin^2 x} dx$ (6mks).

(c) Taking
$$I_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx$$
; show that $\int_{0}^{\frac{\pi}{2}} \cos^{2} x \, dx = \left(\frac{n-1}{n}\right) I_{n-2}$, (11mks).

Where $n \ge 2$

QUESTION 4. (20MKS):

(a).(i) Prove that
$$\int_0^1 x^2 e^{2x} = \frac{e^2}{4} - \frac{1}{4}$$
 (4mks).

(ii)
$$\int \frac{2x+3}{x^2+2x+3} dx$$
 (6mks).

(b)
$$\int_{1}^{2} \frac{x^{2}+2}{x+1} dx (6mks).$$

(c) If $f(x) = (5 - \frac{4}{x})$, find all c in the interval(1, 4) such that

$$f'(c) = \frac{f(4) - f(1)}{(4-)}$$
 (4mks).

QUESTION 5 [20MKS]:

- (a) Evaluate the following:
 - (i) $\int \sin^5 x \, dx$ (5mks)
 - (ii) Find the approximate value of $\sqrt[10]{1.01}$ (5mks)
- (b) (i)Using the first four terms ,show that the approximate value of $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots (5mks)$
 - (ii) Calculate the volume of the solid formed by revolving the region Bounded by the curve $y=\sqrt{x}$ and $y=x^2$ (6mks).