JOUST

KOSELE

SMA200: CALCULUS II.

QUESTION 1 [30MKS]:[COMPULSORY]:

1. (a) Evaluate the integral (3mks)

$$
\int \tan ^{-1} x d x
$$

(b)Evaluate the following integrals:
(i) $\int \frac{d x}{4 x+5}(3 \mathrm{mks})$.
(ii) $\int \frac{1}{x^{2}-2 x+5} d x \quad$ (4mks)
(c) Find the area between the curves $f(y)=\left(3-\boldsymbol{x}^{2}\right)$ and $\mathbf{g}(\mathbf{y})=(\mathbf{y}+\mathbf{1}) .(4 \mathrm{mks})$.
(d) Find the intercepts of $\mathrm{f}(\mathrm{x})=x^{2}-3 x+2$ and show that $\mathrm{f}^{\prime}(\mathrm{x})=0$ at some point between the two curves. (5mks).
(e)Find the volume of the solid formed by revolving the region bounded by $\mathrm{f}(\mathbf{x})=\left(\mathbf{2}-\boldsymbol{x}^{\mathbf{2}}\right)$ and $\mathrm{g}(\mathrm{x})=1$ about the line $\mathbf{y}=\mathbf{1}$.(5 mks).
(f) Find the arc length of the curve given by $f(x)=\frac{2}{3} x^{1.5}+\frac{1}{x}(6 \mathrm{mks})$.

QUESTION 2.[20MKS]:

(a).Find the area of the surfaceobtained by revolving the curve $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$ on the interval $0 \leq x \leq 1$ about the x -axis.
(b) Evaluate the integral:
$\int x^{2} e^{x} d x(6 \mathrm{mks})$.
(c) Express as the following fractions as a sum of partial fractions:
(i) $\frac{x-1}{3 x^{2}-11 x+10}$.
(ii) $\int \frac{x-1}{3 x^{2}-11 x+10} d x(7 \mathrm{mks})$.

QUESTION 3[20MKS]:

(a) Evaluate the $\lim _{x \rightarrow 0} \frac{e^{2 x-1}}{x}$ (3 mks).
(b) Using the change of variable $t=\tan x ;$ Find $\int \frac{1}{1+\sin ^{2} x} d x(6 \mathrm{mks})$.
(c) Taking $\mathrm{I}_{\mathrm{n}}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$; show that $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x=\left(\frac{n-1}{n}\right) \mathrm{I}_{\mathrm{n}-2},(11 \mathrm{mks})$.

Where $n \geq 2$

QUESTION 4. (20MKS):

(a). (i) Prove that $\int_{0}^{1} x^{2} e^{2 x}=\frac{e^{2}-\frac{1}{4}}{4}(4 \mathrm{mks})$.
(ii) $\int \frac{2 x+3}{x^{2}+2 x+3} d x(6 \mathrm{mks})$.
(b) $\int_{1}^{2} \frac{x^{2}+2}{x+1} d x(6 \mathrm{mks})$.
(c) If $f(x)=\left(5-\frac{4}{x}\right)$, find all c in the interval $(1,4)$ such that
$f^{\prime}(c)=\frac{f(4)-f(1)}{(4-)}(4 \mathrm{mks})$.

QUESTION 5 [20MKS]:

(a) Evaluate the following:
(i) $\int \sin ^{5} x d x$ (5mks)
(ii) Find the approximate value of $\sqrt[10]{1.01}(5 \mathrm{mks})$
(b) (i)Using the first four terms, show that the approximate value of $e^{x}=1+\mathrm{x}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots . .(5 \mathrm{mks})$
(ii) Calculate the volume of the solid formed by revolving the region Bounded by the curve $\mathrm{y}=\sqrt{ } x$ and $\mathrm{y}=x^{2}$ (6mks).

