JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 $4^{\text {th }}$ YEAR $1^{\text {st }}$ SEMESTER EXAMINATION[SCHOOL BASED] SMA 403: TOPOLOGY

INSTRUCTION: Attempt question one (COMPULSORY) and any other TWO questions only.

QUESTION ONE(COMPULSORY) [30 MARKS]

(a). Define the following terms: Open set, closed set, boundary point and interior point.
(b). Let X be a topological space. Prove that a subset V of X is open in X iff V is a neighbourhood of each point belonging to V.
(c). Distinguish between a topological subspace and a basis of a topological space.
(d). Define a homeomorphism giving an example.
(4 marks)
(e). If $L=\left\{(x, y) \in \mathbb{R}^{n}: 7 x+3 y=14\right\}$ and $r=(2,-1)$, find the distance between the point r and L.
(4 marks)
(f). Let X be a topological space, and let A be a subset of X. A subset B of A is closed in A iff $B=A \backslash F$ for some closed subset F of X. (5 marks) (g). Given the set $V=\{v: v$ is a digit $\}$, find the cardinality of V and the subset of V containing nonzero prime numbers.

QUESTION TWO [20 MARKS]

(a). Define a topological space.
(b). Let $P=\{1,2,3\}, \hbar=\{\emptyset,\{1\},\{1,2\},\{1,3\}, P\}$ and
$\hbar^{\prime}=\{\emptyset,\{1\},\{2\},\{1,2\},\{2,3\}, P\}$. Determine whether \hbar and $\hbar \cup \hbar^{\prime}$ are topologies on P.

QUESTION THREE [20 MARKS]

(a). Define a Hausdorff space giving one example.
(b). Prove that all metric spaces are Hausdorff spaces.

QUESTION FOUR [20 MARKS]

(a). Define continuity of a function between topological spaces. (2 marks)
(b). Let X, Y, Z be topological spaces, and let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be continuous functions. Prove that the composition $g \circ f: X \rightarrow Z$ of the functions f and g is continuous.
(c). Let X, Y be topological spaces, and let $f: X \rightarrow Y$ be a function from X to Y. Prove that the function f is continuous if and only if $f^{-1}(G)$ is closed in X for every closed subset G of Y.

QUESTION FIVE [20 MARKS]

(a). Define a metric space.
(b). If $X=\left\{(x, y) \in \mathbb{R}^{2}: x y=1\right\}$ and $Y=\left\{\left(x, y \in \mathbb{R}^{2}: y=0\right)\right\}$, find $d(X, Y)$.
(c). Let \mathbb{R} be the set of of real numbers. Show that $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $d(x, y)=|x-y|$, for all $x, y \in \mathbb{R}$ a metric on \mathbb{R}.
(d). Describe two applications of the study of topology to real life situations giving relevant examples.

