YEAR THREE SEMESTER I

SAS 313: PRINCIPLES OF ECONOMETRICS

INSTRUCTION: Answer Question One and any other Two questions. QUESTION ONE
(a) Describe sources of an econometric data (5 marks).
(b) (i) Outline the procedure of a two-sided t-test for testing the coefficients of an econometric model. Assume that you have a model of the form: $Y=\beta_{0}+$ $\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$, where β_{0}, β_{1} and β_{2} are constants, Y is a dependent variable and X_{i} 's are independent variables (4 marks).
(ii) List three limitations of a t-test (3 marks).
(c) Given a generalized linear econometric model of the form: $y=\beta_{0}+$ $\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{n} x_{n}+\varepsilon$; determine:
(a) $E(y)$ and $\operatorname{VAR}(y)$
(b) The distribution of y (3marks)
(i) Describe any three methods used in modern econometrics (6 marks).
(ii) $y_{i}=\beta x_{i}+\varepsilon_{i}, i=1,2, \ldots, n ; \varepsilon_{i} \sim \operatorname{iiN}\left(0, \sigma^{2}\right)$ is a multivariate form of a regression model. Find $\boldsymbol{X}^{\prime} \boldsymbol{X}$ and $\boldsymbol{e}^{\prime} \boldsymbol{e}$ (5 marks)
(iv) Define the term Heteroscedasity (2 marks)
(v) List two consequences of heteroskedasity on least squares estimators (2 mks)

QUESTION TWO

Given the following data, you are required to find:
(a) $\boldsymbol{X}^{\prime} \boldsymbol{X}$ and $\boldsymbol{X}^{\prime} \boldsymbol{Y}$
(b) α and β,the y-intercept and the slope of the linear econometric
model of the form:

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}
$$

\%	64	81	100	121	144	169	196	225
䈞	54	67	53	99	118	138	159	183

QUESTION THREE

Consider the following equation with the estimated standard errors in parentheses

$$
\begin{gathered}
\widehat{W_{t}}=8.562+0.364 P_{t}+0.004 P_{t-1}-2.560 U_{t} \\
(0.080)
\end{gathered}
$$

Where $W_{t}=$ wages and salaries per employee in year t
$P_{t}=$ the price level at year t
$U_{t}=$ the unemployment rate in year t
(a) Develop a one -sided t -test to test your own hypotheses for the estimated coefficients of P_{t-1} and U_{t}
(b) Discuss the theoretical validity of P_{t-1} and how your opinion of that validity to this equation might be changed by your answer in (a) above. With a reason explain whether P_{t-1} should be dropped from the equation.

QUESTION FOUR

(a) What do we mean by first-order autoregressive model?(2mks)
(b) Given a simple econometric model of the form: $Y_{i}=\beta X_{i}+\varepsilon_{i}$, where $\operatorname{VAR}\left(\varepsilon_{i}\right)=\sigma_{i}^{2}$. Show that:
(i) $E(\hat{\beta})=\beta$ (3 marks)
(ii) $\operatorname{VAR}(\hat{\beta})=\frac{\sum x_{i}^{2} \sigma_{i}^{2}}{\left(\sum x_{i}^{2}\right)^{2}}$ (5 marks)
(c)Supposing $\sigma_{i}^{2}=\sigma^{2} Z_{I}^{2}$ where Z_{i} 's are known, show that if β^{*} is the weighted least squares (WLS) estimator of β, and $\hat{\beta}$ is the ordinary least squares(OLS) estimator of β,then

$$
\frac{\operatorname{Var}\left(\beta^{*}\right)}{\operatorname{Var}(\hat{\beta})}=\frac{\left(\sum x_{i}^{2}\right)^{2}}{\sum\left(x_{i}^{2} / z_{i}^{2}\right) \sum x_{i}^{2} z_{i}^{2}}
$$

QUESTION FIVE

(a) Describe three economic situations where lag operators can be applied (6 mks)
b) Given an econometric model, $Y_{t}=\alpha+D(L) X_{t}+U_{t}$ where $\mathrm{D}(\mathrm{L})$ is a polynomial of degree s in its lag operator ,i.e.
$D(L)=\delta_{0}+\delta_{1} L+\cdots+\delta_{s} L^{s}$, show that the mean lag is given by;

$$
\begin{equation*}
\frac{\sum_{i=0}^{S} i \delta_{i}}{\sum_{i=0}^{s} \delta_{i}} \tag{3marks}
\end{equation*}
$$

(c) When there is a distributed lag on both Y_{t} and X_{t}, we can have the following relationship

$$
A(L)\left(Y_{t}-\alpha\right)=\alpha B(L) X_{t}+V_{t} \text { where } A(L)=1-\alpha_{1} L-\alpha_{2} L^{2}-\cdots .-\alpha_{p} L^{p}
$$

and $B(L)=\beta_{0}+\beta_{1} L+\beta_{2} L^{2}+\cdots+\beta_{q} L^{q}$ and $p+q<s$. Prove that:
(i) $\quad D(L)=\frac{B(L)}{A(L)}=\beta_{0}+\left(\alpha_{1} \beta_{0}+\beta_{1}\right) L+\alpha_{1}\left(\alpha_{1} \beta_{0}+\beta_{1}\right) L^{2}+$ $\alpha_{1}^{2}\left(\alpha_{1} \beta_{0}+\beta_{1}\right) L^{2}+\cdots(5 \mathrm{mks})$
(ii) $\quad D(1)=\frac{\beta_{0}+\beta_{1}}{1-\alpha_{1}}$
(iii) The mean lag $=\frac{\alpha_{1} \beta_{0}+\beta_{1}}{\left(1-\alpha_{1}\right)\left(\beta_{0}+\beta_{1}\right)} \quad(3 \mathrm{mks})$

