JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF

SMA 200: CALCULUS II

Date:
August, 2013
Time: -

INSTRUCTIONS:

1. This examination paper contains five questions. Answer question one, and any other two questions.
2. Start each question on a fresh page.
3. Indicate question number clearly at the top of each page.

QUESTION ONE (COMPULSORY) (30 marks)

a) State the Fundamental Theorem of the calculus. (4 marks)
b) Evaluate the integral

$$
\int_{1}^{9} \frac{2 t^{3}+t^{2} \sqrt{t}-1}{t^{2}} d t(4 \text { marks })
$$

c) Verify by differentiation that the formula is correct

$$
\begin{gathered}
\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\cosh ^{-1}\left(\frac{x}{a}\right)+C \quad(5 \text { marks }) \\
(x>a>0)
\end{gathered}
$$

d) Evaluate the indefinite integral

$$
\int \sqrt{\frac{1-\cos 4 x}{2}} d x \text { (4 marks) }
$$

e) Evaluate the integral

$$
\int_{0}^{\pi / 4}\left(1+e^{\tan \theta}\right) \sec ^{2} \theta d \theta \quad(4 \text { marks })
$$

f) Find the length of the curve $y=(1 / 3)\left(x^{2}+2\right)^{3 / 2}$ from $x=0$ to $x=3$ (5 marks)
g) Determine whether the following series converges or diverges

$$
\sum_{n=1}^{\infty} \frac{5^{n}}{n^{2}}(4 \mathrm{marks})
$$

QUESTION TWO (20 marks)

a) By completing the square and using appropriate substitution to reduce to standard form, evaluate the integral
$\int_{1}^{2} \frac{x+2}{\sqrt{x^{2}+4 x}} d x$ (6 marks)
b) Using a substitution to reduce to standard form, evaluate
$\int \frac{2}{x \sqrt{1-4 \ln ^{2} x}} d x$ (4 marks)
c) By making the appropriate substitution for u :
i. express the following integral in terms of u
ii. evaluate the integral as function of x

$$
\int_{0}^{1} \frac{(x+3)^{2}}{\sqrt{x+2}} d x(6 \text { marks })
$$

d) By multiplying by a form of 1 , evaluate the integral

$$
\int \frac{1}{\csc \theta-\cot \theta} d \theta(4 \text { marks })
$$

QUESTION THREE (20 marks)

a) Express the integrand as a sum of partial fractions and evaluate the integral $\int \frac{1-x+2 x^{2}-x^{3}}{x\left(x^{2}+1\right)^{2}} d x$ (8 marks)
b) Evaluate the following integral by using a substitution prior to integration by parts $\int x^{3} e^{5 x} d x$ (7 marks)
c) Obtain a reduction formula that expresses the integral $\int \sin ^{n} x d x$ in terms of an integral of a lower power of $\sin x$. (5 marks)

QUESTION FOUR (20 marks)

a) Find the volume of the solid generated by revolving the region bounded by the curve $y=x^{2}+1$ and line $y=x+3$ about the x-axis. (7 marks)
b) Determine the area of the surface generated by revolving the curve $y=\sqrt{x+1}, 1 \leq x \leq 5$ about the x-axis. (6 marks)
c) Find the area of the region enclosed by the line $4 x-y=16$ and the curve $y^{2}-4 x=4$. (7 marks)

QUESTION FIVE (20 marks)

a) Using eleven ordinates, apply Simpson's rule to evaluate the integral $4 \int_{0}^{1} \frac{d x}{1+x^{2}}$ (5 marks)
b) Find a power series for the logarithmic function
$L(x)=\ln (1+x)$ (6 marks)
c) Show that the Taylor series about $x=0$ for the function $f(x)=e^{x}$ is $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. (5 marks)
d) Evaluate the following improper integral

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x(4 \text { marks })
$$

