JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY $2^{\text {nd }}$ YEAR $1^{\text {st }}$ SEMESTER EXAMINATION [FULL-TIME] IIT 3218: INTRODUCTION TO NUMBER THEORY

INSTRUCTION: Attempt question one (COMPULSORY) and any other TWO questions only.

QUESTION ONE (COMPULSORY) [30 MARKS]
$\begin{array}{lr}\text { (a). Define a rational number and a prime number. } & \text { (4 marks) } \\ \text { (b). Describe a good integer. } & (3 \text { marks) } \\ \text { (c). State the well-ordering axiom. } & (3 \text { marks) } \\ \text { (d). State the principal of mathematical induction. } & (4 \text { marks) } \\ \text { (e). Show that there is no rational number whose square is } 3 . & \text { (6 marks) } \\ \text { (f). Define Diophantine equation and hence solve } 23 x+29 y=1 . & \text { (5 marks) } \\ \text { (g). Determine all positive integers } n \text { for which } n+1 \mid n^{2}+1 . & \text { (5 marks) }\end{array}$

2 (a). Prove that if $a^{k} \equiv 1 \bmod n$, where a is a positive integer $k \leq n$, then a is relatively prime to the positive integer n.
(b). Describe the Legendre symbol as used in number theory. (2 marks)

3 (a). Prove that for all $g \neq 0$ in \mathbb{Z}_{p}, g is such that
$g^{p-1} \equiv 1 \bmod p$.
(10 marks)
(b). Let $\operatorname{gcd}(a, n)=1$. Prove that for a ϕ-function mapping \mathbb{N} to \mathbb{C},
we have $a^{\phi(n)} \equiv 1 \bmod n$.
(10 marks)
4. State and prove the Bachet-Bezout theorem.
(20 marks)
5. (a). Prove that every integer greater than one is a product of prime numbers.
(b). State two applications of number theory to computing.

