JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICAL \& ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (ACTUARIAL) WITH IT
$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2013/2014 ACADEMIC YEAR CENTRE: MAIN

COURSE CODE: SAS 103
COURSE TITLE: INTRODUCTION TO PROBABILITY THEORY
EXAM VENUE: LR 1 STREAM: (Actuarial)
DATE: 23/12/2013
EXAM SESSION: 9.00-11.00 AM
TIME: 2 HOURS

Instructions:

1. Answer question 1 (compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (20 MARKS)-(COMPULSORY)

a. In the probability distribution below it is known that $E(X)=3.2$

\mathbf{X}	$\mathbf{1}$	2	3	4	5
$\operatorname{Pr}(\mathbf{X}=\mathbf{x})$	0.3	a	0.1	$\mathbf{0 . 3}$	b

i. Compute the values of a and b.
(3 marks)
ii. Determine $\operatorname{Var}(2 X)$
(5 Marks)
b. A continuous random variable X has the p.d.f given by
$f(x)=\left\{\begin{aligned} K\left(2 x-x^{2}\right), & 0<x<2 \\ 0, & \text { otherwise }\end{aligned}\right.$
Find
i. the value of the constant K (3marks)
ii. $P(X<1 / K)$
(3marks)
c. The number of surface flaws in plastic panel used in the interior of automobiles has a Poisson distribution with a mean of 0.06 flaws per square foot of plastic panel. Assume each automobile interior contains 20 square feet of plastic panel. Find the probability that:
i. There are no surface flaws in an auto's interior.
(3marks)
ii. In 10 cars sold to a rental company none of the 10 cars has any surface flaw. (2marks)
iii. In 10 cars sold to a rental company at most two cars have any surface flaw. (4marks)
d. Two cards are selected from a box which contains seven cards numbered $1,1,2,2,3,6$ and 8 . Let X denote the sum of the pair drawn. Find
i. the distributions of X .
(4marks)
ii. the probability of getting a prime sum.
(3marks)

QUESTION TWO (20 MARKS)

a. The comprehensive strength of samples of cement can be modeled by a normal distribution with mean of 6000 kilograms per square centimeter and a standard deviation of 100 kilograms per square centimeter. Find:
i. The probability that a sample's strength is less than $6250 \mathrm{~kg} / \mathrm{cm}^{2}$
ii. The probability that a sample's strength is between $5800 \mathrm{~kg} / \mathrm{cm}^{2}$ and $5900 \mathrm{~kg} / \mathrm{cm}^{2}$
iii. The strength exceeded by 95% of the samples. (10 marks)
b. The binomial distribution $b(x, n, \theta)$ is known to have the mean $n \theta$. Derive for this distribution $E\left(X^{2}\right)$ hencevar (x). Obtain the standard deviation of x at $n=50$, $1-\theta=0.38$.

QUESTION THREE (20 MARKS)

a. Determine the p.m.f, the second raw moment and the moment generating function at $\mathrm{t}=1$ of a discrete random variable with the following c.d.f.
(8marks)

$\mathrm{F}(\mathrm{x})=$$=$ 0 $\mathrm{O}=2$		
	0.5	$2 \leq x<5.7$
	0.8	$6.7 \leq x<6.5$
	1	$6.5 \leq x<8.5$

b. The negative binomial distribution for a random variable X is given as follows
$f(x)=\binom{x-1}{k-1} \alpha^{k}(1-\alpha)^{x-k}$

$$
\begin{aligned}
& k=1,2,3 \ldots \\
& x=k, k+1, k+2 \ldots
\end{aligned}
$$

Derive expressions for $E(X)$ and $\operatorname{Var}(X)$.
Hence find the standard deviation given
$\mathrm{k}=4, \alpha=0.02$
QUESTION FOUR (20 MARKS)
a. Verify that $f(x)=\left\{\begin{array}{r}\left(\frac{512}{27}\right)^{1 / 3}\left(\frac{3}{11}\right)^{x}, x=1,2,3,4, \ldots . \\ 0, \text { otherwise }\end{array}\right.$
is a p.m.f hence compute $P(X>2)$
(7marks)
b. A pair of digits from 1 to 4 is chosen at random with repetitions allowed. Let X denote the product of the digits. Find the distribution of X hence its variance.
(7 marks)
c. The probability of a successful optical alignment in the assembly of an optical data storage product is 0.8 . Assume that the trials are independent. What is the probability that:
i. The first successful alignment requires four trials.
ii. The first successful alignment requires at least four trials. (6 marks)

QUESTION FIVE (20 MARKS)

a. Let A and B be events with $P(A)=0.3, P(B)=q, P(A U B)=0,5$. Find q if
i. A and B are mutually exclusive.
ii. A and B are Independent (5 marks)
b. During a school vacation, I can go skiing, hiking or stay at home and play soccer with the odds $50 \%, 30 \%$ and 20% respectively. The conditional probabilities of getting injured are $30 \%, 10 \%$ and 20% respectively if I go skiing, hiking or play soccer. Find the probability that:
i. I will get injured.
ii. If I came back from vacation with an injury, I had gone skiing.
(7 marks)
c. The chance of John passing a standard examination is 0.6 . Let X be a random variable representing the number of passes in 5 standard examinations.
i. Using an appropriate assumption, find the probability distribution of X. You may round off probabilities to 3 decimal places.
ii. If for every standard examination passed he earns a token of shs. 2,000 find the expected amount of money after the $5^{\text {th }}$ pass.
(8 marks)

