

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICAL & ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (ACTUARIAL) WITH IT 1ST YEAR 1ST SEMESTER 2013/2014 ACADEMIC YEAR

CENTRE: MAIN

COURSE CODE: SAS 103

COURSE TITLE: INTRODUCTION TO PROBABILITY THEORY

EXAM VENUE: LR 1

STREAM: (Actuarial)

DATE: 23/12/2013

EXAM SESSION: 9.00 – 11.00 AM

TIME: 2 HOURS

Instructions:

- 1. Answer question 1 (compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (20 MARKS)-(COMPULSORY)

a. In the probability distribution below it is known that E(X) = 3.2

Χ	1	2	3	4	5
Pr(X=x)	0.3	a	0.1	0.3	b

i. Compute the values of a and b.

```
(3 marks)
```

ii. Determine Var(2X)

(5 Marks)

b. A continuous random variable X has the p.d.f given by

$$f(x) = \begin{cases} K(2x - x^2), & 0 < x < 2\\ 0, & otherwise \end{cases}$$

Find

i. the value of the constant K

(3marks)

ii. $P(X < \frac{1}{K})$

(3marks)

- c. The number of surface flaws in plastic panel used in the interior of automobiles has a Poisson distribution with a mean of 0.06 flaws per square foot of plastic panel. Assume each automobile interior contains 20 square feet of plastic panel. Find the probability that:
 - i. There are no surface flaws in an auto's interior.

(3marks)

- ii. In 10 cars sold to a rental company none of the 10 cars has any surface flaw. (2marks)
- iii. In 10 cars sold to a rental company at most two cars have any surface flaw.

(4marks)

- d. Two cards are selected from a box which contains seven cards numbered
 - 1,1,2,2, 3,6 and 8. Let X denote the sum of the pair drawn. Find
 - i. the distributions of X.

(4marks)

ii. the probability of getting a prime sum.

(3marks)

QUESTION TWO (20 MARKS)

- a. The comprehensive strength of samples of cement can be modeled by a normal distribution with mean of 6000 kilograms per square centimeter and a standard deviation of 100 kilograms per square centimeter. Find:
 - i. The probability that a sample's strength is less than 6250 kg/cm^2
 - ii. The probability that a sample's strength is between 5800kg/ cm² and 5900kg/ cm²
 - iii. The strength exceeded by 95% of the samples. (10 marks)
- b. The binomial distribution $b(x, n, \theta)$ is known to have the mean $n\theta$. Derive for this distribution $E(X^2)$ hence *var* (x). Obtain the standard deviation of x at n = 50, $1 - \theta = 0.38$. (10 marks)

QUESTION THREE (20 MARKS)

a. Determine the p.m.f, the second raw moment and the moment generating function at t=1 of a discrete random variable with the following c.d.f. (8marks)

	0	<i>x</i> < 2
	0.2	$2 \le x < 5.7$
F(x)=	0.5	$5.7 \le x < 6.5$
	0.8	$6.5 \le x < 8.5$
	1	$8.5 \le x$

b. The negative binomial distribution for a random variable X is given as follows

$$f(x) = {\binom{x-1}{k-1}} \alpha^k (1-\alpha)^{x-k}$$

k=1, 2, 3... x=k, k+1, k+2...

Derive expressions for $E(\boldsymbol{X})$ and $Var\left(\boldsymbol{X}\right)$.

Hence find the standard deviation given

k=4, =0.02

(12 marks)

QUESTION FOUR (20 MARKS)

a. Verify that
$$f(x) = \begin{cases} \left(\frac{512}{27}\right)^{1/3} \left(\frac{3}{11}\right)^x, x = 1, 2, 3, 4, \dots \\ 0, otherwise \end{cases}$$

is a p.m.f hence compute P(X > 2) (7marks)

- b. A pair of digits from 1 to 4 is chosen at random with repetitions allowed.
 Let X denote the product of the digits. Find the distribution of X hence its variance. (7 marks)
- c. The probability of a successful optical alignment in the assembly of an optical data storage product is 0.8. Assume that the trials are independent. What is the probability that:
 - i. The first successful alignment requires four trials.
 - ii. The first successful alignment requires at least four trials. (6 marks)

QUESTION FIVE (20 MARKS)

- a. Let A and B be events with P(A) = 0.3, $P(B) = q_{P}(AUB) = 0.5$. Find q if
 - i. A and B are mutually exclusive.
 - ii. A and B are Independent (5 marks)
- **b.** During a school vacation, I can go skiing, hiking or stay at home and play soccer with the odds 50%, 30% and 20% respectively. The conditional probabilities of getting injured are 30%, 10% and 20% respectively if I go skiing, hiking or play soccer. Find the probability that:
 - i. I will get injured.
 - ii. If I came back from vacation with an injury, I had gone skiing.

(7 marks)

- **c.** The chance of John passing a standard examination is 0.6. Let X be a random variable representing the number of passes in 5 standard examinations.
 - i. Using an appropriate assumption, find the probability distribution of X. You may round off probabilities to 3 decimal places.
 - ii. If for every standard examination passed he earns a token of shs.
 2,000 find the expected amount of money after the 5th pass.

(8 marks)