

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE, BIS, ICT, COMPUTER SECURITY

2^{ND} YEAR 1^{ST} SEMESTER 2015/2016 ACADEMIC YEAR REGULAR

COURSE CODE: IIT 3218

COURSE TITLE: INTRODUCTION TO NUMBER THEORY

EXAM VENUE: STREAM: (BSc. Actuarial)

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (Compulsory)

[30 Marks]

(a) State carefully the following principles as used in number theory:

[3 mks]

- (i) the well-ordering principle
- (ii) the pigeonhole principle
- (iii) the principle of mathematical induction
- (b) Find the base 3 expansion of $(593)_7$.

[3 mks]

- (c) If a, b, & c are integers such that a divides b, and b divides c, show that a divides c. [3 mks]
- (d) Write the following integers 11 and 7983 as congruence modulo 8

[2 mks]

(e) Use the Sieve of Aratosthenes to find all primes less than 100.

[3 mks]

- (f) Define the Euler ϕ -function of a positive integer n, $\phi(n)$, and hence find $\phi(4)$ and $\phi(16)$. [4 mks]
- (g) If a and b are integers both of the form 4n + 1, show that their product ab is also of the form 4n + 1.
- (h) Give a set of 5 integers that are both mutually relatively prime as well as pairwise relatively prime. [2 mks]
- (i) Find all the solutions of the congruence $3x \equiv 12 \pmod{6}$.

[4 mks]

(j) Let a and b be two real numbers. Prove that

$$\min(a, b) + \max(a, b) = a + b$$

where $\min(a, b)$ and $\max(a, b)$ are respectively the minimum and maximum of the numbers a and b.

QUESTION TWO

[20 Marks]

(a) Use the principle of mathematical induction to prove that

$$n! \leq n^n$$

for each $n \in \mathbb{N}$. [6 mks]

- (b) Let (a, b) denotes the greatest common divisor (GCD) of the integers a and b. Show that if (a, b) = d, then $(\frac{a}{d}, \frac{b}{d}) = 1$. [6 mks]
- (c) By using the Euclidean algorithm, find the GCD of the integers 4147 & 10672, and hence express the GCD as a linear combination of 4147 & 10672. [8 mks]

QUESTION THREE

[20 Marks]

- (a) If n is a composite integer, show that n has a prime factor not exceeding \sqrt{n} . [5 mks]
- (b) Prove that there are infinitely many primes.

[6 mks]

- (c) Let the prime factorization of the integers a and b be given by $a = p_1^{a_1} p_2^{a_2} \cdot \cdot \cdot p_m^{a_m}$ and $b = p_1^{b_1} p_2^{b_2} \cdot \cdot \cdot p_m^{b_m}$.
 - (i) Define the least common multiple (LCM) and the greatest common divisor (GCD) of a and b in terms of the prime factorization. [2 mks]
 - (ii) Show that $\langle a, b \rangle = \frac{ab}{(a,b)}$, where $\langle a, b \rangle$ and (a,b) are respectively, the LCM and the GCD of a, b.

QUESTION FOUR

[20 Marks]

- (a) Convert $(AB6C7D)_{16}$ to binary notation if A = 10, B = 11, C = 12 and D = 13. [6 mks]
- (b) Prove that if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$. [4 mks]
- (c) Define the following terms and give an example of each: [5 mks]
 - (i) A complete residue system modulo m
 - (ii) A reduced residue system modulo m
- (d) Briefly describe Cryptography as an application of number theory. [4 mks]

QUESTION FIVE

 $[20 \, \mathrm{Marks}]$

(a) State the Chinese Remainder Theorem.

[2 mks]

(b) Solve the following system of congruences:

[8 mks]

$$x \equiv 1 \pmod{2}$$
$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$.

- (c) Find all the integers that leave a remainder of 1 when divided by 2, a remainder of 2 when divided by 3, and a remainder of 3 when divided by 5. [5 mks]
- (d) Define the function f(x) = [x], and sketch its graph.

[5 mks]