JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

4^{th} YEAR 1^{st} SEMESTER EXAMINATION [SCHOOL BASED] SMA 403: TOPOLOGY

INSTRUCTION: Attempt question one (COMPULSORY) and any other TWO questions only.

QUESTION ONE(COMPULSORY) [30 MARKS]

- (a). Given the set $W = \{w : w \text{ is a consonant}\}$, find the cardinality of W and its complement. (3 marks)
- (b). State and prove the generalized 1^{st} De' Morgan's Law. (5 marks)
- (c). Distinguish between a regular space and a basis. (4 marks)
- (d). Show that the constant function is continuous. (4 marks)
- (e). Show that a set is closed if its complement is open. (4 marks)
- (f). Let X be a topological space, and let A be a subset of X. A subset B of A is closed in A if and only if $B = A \setminus F$ for some closed subset F of X. (5 marks)
- (g). Define: Neighbourhood, closed set and accumulation point. (5 marks)

QUESTION TWO [20 MARKS]

- (a). Show that the set $C_R[0,1]$ of all real-valued continuous functions defined on [0,1] is a metric space with respect to the metric defined as $d(f,g) = \sup\{|f(x) g(x)|; x \in [0,1]\}$ where $f,g \in C_R[0,1]$. (10 marks)
- (b). Show that (X, \mathfrak{D}) is a topological space where \mathfrak{D} is the class of all subsets of X. (10 marks)

QUESTION THREE [20 MARKS]

- (a). State and prove the cardinality theorem for any three finite sets A, B and C. (5 marks)
- (b). Prove that all metric spaces are T_2 spaces. (15 marks)

QUESTION FOUR [20 MARKS]

- (a). Define a normal space. (2 marks)
- (b). If $P = \{(a, b) \in \mathbb{R}^2 : ab = 1\}$ and $Q = \{(a, b \in \mathbb{R}^2 : b = 0)\}$, find d(P, Q). (5 marks)
- (c). State and prove Cantor's Cardinality Theorem. (9 marks)
- (d). Describe two applications of the study of topology to real life situations. (4 marks)

QUESTION FIVE [20 MARKS]

- (a). Define continuity of a function between topological spaces (2 marks)
- (b). Let X, Y, Z be topological spaces, and let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Then the composition $g \circ f: X \to Z$ of the functions f and g is continuous. (14 marks)
- (c). Let X, Y be topological spaces, and let $f: X \to Y$ be a function from X to Y. The function f is continuous if and only if $f^{-1}(G)$ is closed in X for every closed subset G of Y. (4 marks)