JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICAL & ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF BUSINESS ADMINISTRATION WITH IT 1^{ST} YEAR 2^{ND} SEMESTER 2013/2014 ACADEMIC YEAR CENTRE: KISH L. CENTRE FULL TIME **COURSE CODE: SMA 3112** COURSE TITLE: MATHEMATICS II EXAM VENUE: LR 17 STREAM: (BBA) DATE: 18/4/2014 EXAM SESSION: 9.00 – 11.00 AM TIME: 2 HOURS #### **Instructions:** - 1. Answer question 1 (compulsory) and ANY other 2 questions. - 2. Candidates are advised not to write on the question paper. - 3. Candidates must hand in their answer booklets to the invigilator while in the examination room. ## INSTRUCTIONS: Answer question one (compulsory) and any other two questions QUESTION ONE (30 MARKS) - a) Use the ϵ - δ definition to show that $\lim_{x\to 2} x^2 = 4$ (4mks) - b) Evaluate the following limits i) $$\lim_{x \to -3} \frac{x+3}{x^2+7x+12}$$ (3mks) ii) $$\lim_{x\to 2} \frac{x^3-8}{x^2-4}$$ (4mks) c) i) Define the term continuity of a function f (1mk) ii) Given $$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ 1, & x = 3 \end{cases}$$. Is the function continuous at $x = 3$? (3 mks) - d) Find $\frac{dy}{dx}$ using implicit differentiation if $x^5 + 4xy^3 3y^5 = 2$ (5mks) - e) Find the tangent and normal lines to the curve $y^2 6x^2 = -4y 19$ at the point (2,1) (5mks) - f) Solve the differential equation $y-x=x\frac{dy}{dx}$ given the boundary conditions that x=1 when y=2 (5mks) ### **QUESTION TWO (20 MARKS)** - a) i) Use matrix method to solve the simultaneous equations 3x+4y=0, 2x+5y+7=0 (4mks) - ii) Find the values of x for which the matrix $\begin{bmatrix} 2x & x^2 \\ 2 & 1 \end{bmatrix}$ has no inverse (2mks) - b) A rectangular sheet of metal having dimensions 20cm by 12cm has squares removed from each of the four corners and the sides bent upwards to form an open box. Determine the maximum possible volume of the box (6mks) - c) Find the value of the constant k if the line y-3x+k=0 is tangent to the curve $y=2x^2$. Also find the point of tangency (4mks) d) i) State the intermediate value theorem - (1mk) - ii) Show that the function $f(x) = x^3 2x + 1$ defined on [-3, 2] has a real root (3mks) #### **QUESTION THREE (20 MARKS)** - a) Find the equation of the tangent line to the parabola $y=x^2$ at the point (1,1) (4mks) - b) The parametric equation of a curve are as follows: $x = e^t$, $y = \sin t$. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t, hence show that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$ (6mks) - c) A particle moves from a point A so that after t seconds it is 5 metres from A where $S=8t-t^2$. Find the velocity when (4mks) - i) t=0 seconds - ii) t=4 seconds - d) Evaluate the following limits iii) $$\lim_{x\to 0} \frac{\sqrt{x+2}-9}{x}$$ (3mks) iv) $$\lim_{x\to\infty} \frac{x+\sin x-9}{2x+5}$$ (3mks) #### **QUESTION FOUR (20 MARKS)** a) Find $\frac{dy}{dx}$ given that $$i) y = e^{2x + sinx} (4mks)$$ ii) $$xy+x-2y+1=0$$ (4mks) - b) The motion of a student's bicycle can be expressed by the distance equation $S=t^3+2t$. Find the acceleration function and hence determine the acceleration at t=4s. (5mks) - c) Find the value of y'' at the point (-1,1) of the function $x^2y+3y-4=0$ (7mks) #### **QUESTION FIVE (20 MARKS)** a) Find the distance between the line 5x+12y+2=6 and i) the origin (3mks) #### ii) (1,-3) (3mks) - b) Use first principles to find the derivative of $y = x + \frac{1}{x}$; $x \neq 0$ (6mks) - c) A 2% error is made in measuring the radius of a sphere. Find the percentage - error in its surface area. (4mks) d) Find the turning points of the curve $y=5+24x-9x^2-2x^3$ and distinguish them (4mks)