

# JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICAL & ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE RENEWABLE ENERGY 2<sup>ND</sup> YEAR 1<sup>ST</sup> SEMESTER 2013/2014 ACADEMIC YEAR

# **CENTRE: MAIN**

# COURSE CODE: SMA 3231

COURSE TITLE: STATISTICS

EXAM VENUE: LR

DATE: 15/4/2014

STREAM: (Renewable Energy)

EXAM SESSION: 2.00 – 4.00 PM

TIME: 2 HOURS

**Instructions:** 

- 1. Answer question 1 (compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

#### **QUESTION ONE- COMPULSORY (30 MARKS)**

a. Consider the data below

| Mass      | 310- | 410- | 510- | 610- | 710- | 810- |
|-----------|------|------|------|------|------|------|
|           | 400  | 500  | 600  | 700  | 800  | 900  |
| frequency | 8    | 14   | 18   | 20   | 11   | 9    |

- i. Suppose we guess the mean of the data as
  ``, use the coding method to calculate the actual mean and the standard deviation of the data. (4 marks)
- ii. Estimate the median and the modal mass. (5 marks)
- b. The number of messages sent per hour over a computer network has the following distribution

| Х      | 10   | 11 | 12   | 13 | 14   | 15   |
|--------|------|----|------|----|------|------|
| P(X=x) | 0.08 | a  | 0.30 | b  | 0.20 | 0.07 |

It is known that  $P(x \le 12) = 0.53$ ,

i. Find the values of the constants **a** and **b** 

ii. Find the mean number of messages sent per hour.

c. Weekly wages and income tax paid by 10 manual workers were recorded as shown.

| Wage | 76 | 78 | 84 | 85 | 88 | 89 | 95 | 95 | 100 | 110 |
|------|----|----|----|----|----|----|----|----|-----|-----|
| (\$) |    |    |    |    |    |    |    |    |     |     |
| tax  | 8  | 6  | 12 | 12 | 15 | 10 | 16 | 20 | 19  | 22  |

(3 marks)

(3 marks)

- i. Given that wages is variable x while tax is variable y and further that  $\sum x^2 = 81,956$ ,  $\sum y^2 = 2,214$  and  $\sum xy = 13,054$ , calculate the product moment correlation coefficient (PMCC) between weekly earnings and the amount of income tax . (4 marks)
- ii. Comment on the degree of association between weekly earnings and income tax paid by each member. (2 marks)

| d  | The masses in | grams of some | grane are | given below |
|----|---------------|---------------|-----------|-------------|
| u. | The masses m  | Signal Source | grape are |             |

| 159.5 | 151.2 | 175.7 | 155.5 | 153.5 | 175.5 | 144.2 | 159.5 | 165.3 | 149.8 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 141.4 | 141.0 | 169.4 | 167.4 | 163.3 | 136.4 | 154.3 | 153.7 | 162.2 | 164.5 |

i. Construct a grouped frequency distribution for the data using

$$u = 1$$
,  $k = round up\left(\frac{\log n}{\log 2}\right)$  (5 marks)

ii. Estimate from the grouped frequency distribution the upper quartile and the fortieth percentile. (4 marks)

#### **QUESTIONS TWO (20MARKS)**

a. The data below represents the masses of some containers sampled from a warehouse

| Mass      | 30-34 | 35-39 | 40-44 | 45-49 | 50-54 | 55-59 | 60-64 | 65-69 | 70-74 |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Frequency | 1     | 2     | 4     | 5     | 10    | 8     | 5     | 2     | 1     |

Use the data to calculate:

- i. The lower and upper quartiles
- ii. The coefficient of variation
- b. The values of two variables which are known to have a linear relationship were recorded as follows:

| Х | 1 | 3 | 4 | 6 | 8 | 9 | 11 | 14 |
|---|---|---|---|---|---|---|----|----|
| Y | 1 | 2 | 4 | 4 | 5 | 7 | 8  | 9  |

Using the method of least squares, find the equation of regression of:

| i.  |        | X on Y |            |
|-----|--------|--------|------------|
| ii. | Y on X |        | (10 marks) |

## **QUESTION THREE (20 MARKS)**

- **a.** Explain the following terms as used in descriptive statistics:
  - i. Skewness
  - ii. Kurtosis
  - iii. Regression
- b. Compute and explain Bowley's coefficient of skewness for the distribution given below.

(10marks)

| Class     | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|
| frequency | 7    | 10    | 15    | 17    | 8     | 4     | 6     | 7     |

(4marks)

(6marks)

(6 marks)

c. Consider the following information on the Heights of seedlings in centimeters. (4marks)

| Height    | 1-2 | 3-6 | 7-9 | 10-11 | 12-14 | 15 |
|-----------|-----|-----|-----|-------|-------|----|
| frequency | 6   | 30  | 27  | 28    | 12    | 5  |

#### **QUESTION FOUR (20 MARKS)**

a) Two random samples drawn from two normal populations were recorded as follows:

| А | 66 | 67 | 75 | 76 | 82 | 84 | 88 | 90 | 92 |    |    |
|---|----|----|----|----|----|----|----|----|----|----|----|
| В | 64 | 66 | 74 | 78 | 82 | 85 | 87 | 92 | 93 | 95 | 97 |

Use an F-test at 5% level of significance to test whether or not the two populations have the same variance. (10 marks)

b) In a small survey, 350 car owners from four districts P, Q,R, S were found to have cars in the price ranges A, B,C and D in hundreds of thousands as shown.

|   | Р  | Q  | R  | S  |
|---|----|----|----|----|
| А | 9  | 10 | 12 | 19 |
| В | 13 | 20 | 18 | 29 |
| С | 24 | 29 | 12 | 25 |
| D | 34 | 41 | 18 | 37 |

- i. Obtain the Chi-square statistic and state the hypothesis for this problem
- ii. Test the hypothesis at 5% level. (10marks)

## **QUESTION FIVE (20 MARKS)**

a. A study of automobiles produced the following results:

| Model year | Proportion of all vehicles | Chance of getting an |
|------------|----------------------------|----------------------|
|            |                            | accident             |
| 1997       | 0.16                       | 0.05                 |
| 1998       | 0.18                       | 0.02                 |
| 1999       | 0.20                       | 0.03                 |
| others     | 0.46                       | 0.04                 |

An automobile from one of the model years 1997, 1998, and 1999 was involved in an accident. Determine the probability that the model year of this automobile is

i.1997.

ii . others (10mks)

a. If

 $f(x) = \begin{cases} K(x - x^2), & 0 < x < 1 \\ 0, & otherwise \end{cases}$ 

Determine:

i. 
$$P(X < \frac{1}{K})$$
  
ii.  $P(X > \frac{1}{K})$  (10marks)