

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE & TECHNOLOGY UNIVERSITY EXAMINATIONS 2012/2013

2^{ND} YEAR 2^{ND} SEMESTER FOR DIPLOMA IN LINUX FOR ENGINEERING AND IT APPLICATIONS

(KISUMU L.CENTRE)

COURSE CODE: SMA 2121

TITLE: MATHEMATICS II

DATE: 15/8/13 TIME: 9:00 – 10.30 AM

DURATION: 1.30 HOURS

INSTRUCTIONS

- 1. This paper consists of 5 Questions.
- 2. Answer Question 1 (Compulsory) and any other 2 questions.
- 3. Write your answers on the answer booklet provided.

Question one (30 mks)

- a. Define limit of a function. (1 mk)
- b. State differentiability condition for a function f(x) at a point x = a. (1 mk)
- c. If $f(x) = \frac{x+1}{x^2 x 2}$, for what values of x is f(x) continuous? (4 mks)
- d. Find the gradient or derivative or gradient function of the following functions;

i.
$$y = 3$$
 (2 mks)

ii.
$$y = 3x^2 + \frac{1}{2}x^4 - 3x$$
 (3 mks)

- e. Evaluate $\int 3x^2 dx$ (3 mks)
- e. sketch the following turning points

f. the equation of a curve is given as $y = 2x^2 - 1$. Find the equation of

i. the tangent to the curve at the point
$$x = 1$$
 (3 mks)

ii. the normal to the curve at
$$x = 1$$
 (3 mks)

- g. Determine the turning point of the curve whose equation is $y = x^2+2$ (4 mks)
- h. The equation of motion of a car is given as $s = 2t^2 + 3t$. Write an expression of
 - i. the velocity of the car. (2 mks)
 - ii. The acceleration of the car. (2 mks)

Question two (20 marks)

- a. Sketch the curve $y = x(x^2-3)$ (10 mks)
- b. Given the equation of a curve is $y = 2x^2 + 3x + 1$, find the equation of

i. the tangent to the curve at
$$x = 2$$
 (6 mks)

ii. The normal to the curve at x = 2 (4 mks)

Question three (20 marks)

- a. State the three conditions that are satisfied by a function f continuous at x = a (3 mks)
- b. Differentiate the following functions:

i.
$$y = (x-1)(x^2-2)$$
 (3 mks)

ii.
$$y = \frac{x}{x^2 + 2}$$
 (3 mks)

iii.
$$y = -\frac{1}{2}$$
 (3 mks)

b. The volume of a cube is decreasing at the rate of 2 cm³per second. Find the rate of change of the side of the base when its length is 4 cm. (5 marks)

c. determine the vertical asymptotes of y =
$$\frac{1}{x^2 - 1}$$
 (3 mks)

Question four (20 marks)

- a. The motion of a ball thrown vertically upwards is represented by the equation $s = 160t 16t^2$ where
- s represents the height reached by the ball
 - i. find the maximum height reached by the ball (4 mks)
 - ii. the velocity of the ball at a height of 256 m (6 mks)
- b. find the derivative of $y = e^{x^2+2}$ (3 mks)
- c. sketch the curve whose equation is $y = x^4 32x$. (7 mks)

Question five (20 marks)

a. Evaluate the following

i.
$$\int_{1}^{3} 2x^2 dx$$
 (4 mks)

ii.
$$\int \frac{dx}{1+4x^2}$$
 (4 mks)

b. The acceleration of a body is given by $a = 3t^2+2t$. If v = 0 at t = 0, find:

ii.the distance covered by the body at t = 3. (4 mks)

c. Use integration method to show that the volume of a cone of radius r and altitude h is given by

$$\frac{\prod r^2 h}{3} \ . \tag{5 mks}$$