JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
 UNIVERSITY EXAMINATION FOR THEDEGREE OF BACHELOR OF EDUCATION (SCIENCE)

MAIN

REGULAR-RESIT

COURSE CODE: SPH 102
COURSE TITLE: ELECTRICITY AND MAGNETISM 1
EXAM VENUE: LAB 1
DATE: 4/5/2016
STREAM: (BED SCI)

TIME: 2 HRS
EXAM SESSION: 9:00-11:00AM

Instructions:

1. Answer Question 1 (compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

You may use the following constants:
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} ; \mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A} ; \mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$; Electron charge, $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$; Rest mass of
an electron, $\mathrm{M}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$, Rest mass of a proton, $\mathrm{Mp}=1.672 \times 10^{-27} \mathrm{~kg}$; Resistivity of copper $\rho=1.7$ $\times 10^{-8}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{TmA}^{-1}, \mathrm{k}=9.0 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$,
a) A helium nucleus has a charge of +2 e , and a neon nucleus +10 e , where e is the quantum of charge, 1.60 $\times 10^{-19} \mathrm{C}$. find the repulsive force exerted on one by the other when they are 3 nm apart. Assume the system to be in vacuum.

3 mks
b) State any three properties of electric field lines 3mks
c) With an aid of a well labeled diagram, explain the working of a cathode ray tube 3 mks
d) Calculate the electric flux through the rectangle shown in fig 1 below. The rectangle is 10 cm by 20 cm , the electric field is uniform at $200 \mathrm{~N} / \mathrm{C}$ and the angle θ is 30°.

3 mks

Fig 1
e) Find the voltage required on a set of parallel plates 10.0 cm apart to create a field of $1000 \mathrm{~N} / \mathrm{C} .3 \mathrm{mks}$
f) A $1.2 \mu \mathrm{~F}$ capacitor is charged to 3.0 kV . Compute the energy stored in the capacitor 3 mks
g) How many electrons flow through a light bulb each second if the current through the light bulb is 0.75A?

3 mks
h) As shown in the figure 2 below, the ammeter-voltmeter method is used to measure an unknown resistance R. the ammeter reads 0.3 A , and the voltmeter reads 1.5 V . Compute the value of R if the ammeter and voltmeter are ideal.

Fig 2
i) A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$ with a velocity of $2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the field. Compute the force on the proton 3 mks
j) Compute the value of B in air at a point 5 cm from a long straight wire carrying a current of 15 A .3 mks

QUESTION 2 (20 MARKS)

a) Find the ratio of the Coulomb electric force F_{E} to the gravitational force F_{G} between two electrons in vacuum.
b) Three point charges are placed on the x axis as shown in the figure 3 below. Find the net force on the $5 \mu \mathrm{C}$ charge due to the other charges

Fig 3
c) An electron enters the region of a uniform electric field with $v_{i}=3.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and $E=200 \mathrm{~N} / \mathrm{C}$. The horizontal length of the plates is $l=0.100 \mathrm{~m}$.
i. Find the acceleration of the electron while it is in the electric field.

$$
3 \mathrm{mks}
$$

ii. If the electron enters the field at time $t=0$, find the time at which it leaves the field. 3 mks
iii. If the vertical position of the electron as it enters the field is $y_{i}=0$, what is its vertical position when it leaves the field?

QUESTION 3 (20 MARKS)

a) In the figure below, we show two large metal plates connected to a 120 V battery. Assume the plates to be in vacuum and to be much larger than shown in figure 4 below. Find
i. E between the plates 3 mks
ii. The force experienced by an electron between the plates, 3 mks
iii. The PE_{E} lost by an electron as it moves from plate B to plate A, and 3 mks
iv. The speed of the electron released from plate B before striking plate A. 3mks

Fig 4
b) A total charge, Q , is uniformly distributed throughout a non-conducting sphere of radius, R. Find the electric field inside and out. Sketch E vs. r.

8mks

QUESTION 4 (20 MARKS)

a) State Ohms' law

1 mk
b) The series combination of two capacitors shown in figure 5 below is connected across 1000 V . Compute
i. The equivalent capacitance C_{eq} of the combination 2 mks
ii. The magnitudes of the charges on the capacitors 2 mks
iii. The potential differences across the capacitors and 4mks
iv. The energy stored in the capacitors 5 mks

Fig 5
c) A current of 3.0 A flows through the wire shown in fig 6 below. What will a voltmeter read when connected from (a) A to B (b) A to C (C) a to D ? 6 mks

Fig 6

QUESTION 5 (20 MARKS)

a) A 0.100 T magnet has a field that points upward. The pole faces have a 2.00 cm diameter. Find the force on a 5.00 A current flowing eastward.

4mks
b) A mass spectrometer requires charged particles traveling at $2.00 \times 10^{5} \mathrm{~m} / \mathrm{s}$. The magnetic field in the device is 0.500 T . Find the potential difference across the plates of the velocity selector given their separation is 0.800 cm .
c) Find the magnetic field inside and outside of a wire of radius a carrying a uniform current I. Sketch the field as a function of r the distance from the center.

