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QUESTION ONE 

a. Using the differentiation from first principle, differentiate 10004124)( 23  xxxxf  

            (3 marks) 

b. Use the Liebnitz theorem to evaluate the fourth derivative of the function 

 cossin)( f                    (3 marks) 

c. Evaluate  xdxsec                    (4 marks) 

d. Show how the convergence of the series 






rn n

rn

!

)!(
 depends on the value of r 

             (3 marks) 

e. Find the sum, SN, of the first N terms of the series, 






 

n

n 1
ln  and hence determine 

whether the series is convergent, divergent or oscillatory.                (4 marks) 

f. Evaluate  

4472

25
23

23

2
lim





 xxx

xxx

x                    (3 marks)
 

g. Given two vectors jAjAiAA zyx


 and jBjBiBB zyx


 . 

 Show that the cross product of the two vectors is given by the determinant of a 3x3 

matrix.                      (4 marks)  

h. Prove Lagrange’s identity; 

(a× b) · (c × d) = (a · c)(b · d) − (a · d)(b · c).               (4 marks) 

i. State any two axioms of a vector space                (2 marks) 

 

 

QUESTION TWO 

a. Use the appropriate differentiation technique to find the first derivative of the following 

functions 






cos

sin1
)(


f

            (3 marks) 

     
 

1024 )11635()(   xxxxf
        (3 marks) 

 kef 4tan)( 
          (3 marks) 

b. The parametric equations for the motion of a charged particle released from rest in 

electric and magnetic fields at right angles to each other take the forms 

x = a(θ − sin θ), y= a(1 − cosθ). 
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Show that the tangent to the curve has slope 








2
cot


. Use this result at a few calculated 

values of x and y to sketch the form of the particle’s trajectory.   (11 marks) 

 

 

QUESTION THREE 

a. Apply the appropriate technique to evaluate the following 

i.   dxxx 33
            (4 marks)

 

ii.  dxex x3

            (4 marks) 

iii. 
 



)3)(1(

)3(
2

2

xx

dxx

           (4 marks) 

b. By integrating by parts twice, prove that In as defined in the first equalitybelow for 

positive integers n has the value given in the second equality: 

 

 












2

0

2 1

2
sin

cossin

 


n

n
n

dnI

          (8 marks)

 

 

 

QUESTION FOUR 

a. Prove that 











 

2

)1(
ln

n
r

nr

n

n
is absolutely convergent for r = 2, but only 

conditionally convergent for r = 1.                                  (6 marks) 

b. Determine the range of values of x for which the following power series converges 

                             (6 marks) 

c. A Fabry–P´erot interferometer consists of two parallel heavily silvered glass plates. 

Light enters normally to the plates, and undergoes repeated reflections between them, 

with a small transmitted fraction emerging at each reflection.  

Find the intensity |B|2of the emerging wave, where 





0

)1(
n

innerrAB   

with r and   being real.                                 (8 marks) 



3 
 

 

 

 

QUESTION FIVE 

a. i. Find the angle between the vectors a = i + 2j + 3k and b = 2i + 3j + 4k.  (3 marks) 

i. Using the vector method, derive the law of cosines and law of sines        (6 marks) 

  

b. In a crystal with a face-centred cubic structure, the basic cell can be taken asa cube of 

edge a with its centre at the origin of coordinates and its edges parallelto the Cartesian 

coordinate axes; atoms are sited at the eight corners and at thecentre of each face. 

However, other basic cells are possible. One is the rhomboidwhich has the three vectors 

b, c and d as edges. 

i. Show that the volume of the rhomboid is one-quarter that of the cube.      (6 marks)  

  

ii. Show that the angles between pairs of edges of the rhomboid are 60◦ and that the 

corresponding angles between pairs of edges of the rhomboid defined bythe reciprocal 

vectors to b, c, dare each 109.5◦.         (5 marks)  
 


