JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THEDEGREE OF BACHELOR OF EDUCATION (SCIENCE)

MAIN REGULAR RESIT

COURSE CODE: SPH 203

COURSE TITLE: MATHEMATICAL METHODS FOR PHYSICS 1

EXAM VENUE: LAB 1
DATE: 4/05/2016
STREAM: (BED SCI)

TIME: 2.00 HOURS

Instructions:

1. Answer Question 1(compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE

a. Using the differentiation from first principle, differentiate $f(x)=4 x^{3}+12 x^{2}-4 x+1000$
b. Use the Liebnitz theorem to evaluate the fourth derivative of the function

$$
f(\theta)=\sin \theta \cos \theta
$$

c. Evaluate $\int \sec x d x$
d. Show how the convergence of the series $\sum_{n=r}^{\infty} \frac{(n-r)!}{n!}$ depends on the value of r
e. Find the sum, S_{N}, of the first N terms of the series, $\sum \ln \left(\frac{n+1}{n}\right)$ and hence determine whether the series is convergent, divergent or oscillatory.
f. Evaluate

$$
\begin{equation*}
\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-5 x-2}{2 x^{3}-7 x^{2}+4 x+4} \tag{4marks}
\end{equation*}
$$

g. Given two vectors $\vec{A}=\vec{A}_{x} i+\vec{A}_{y} j+\vec{A}_{z} j$ and $\vec{B}=\vec{B}_{x} i+\vec{B}_{y} j+\vec{B}_{z} j$.

Show that the cross product of the two vectors is given by the determinant of a 3×3 matrix.
h. Prove Lagrange's identity;

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \tag{4marks}
\end{equation*}
$$

i. State any two axioms of a vector space

QUESTION TWO

a. Use the appropriate differentiation technique to find the first derivative of the following functions

$$
\begin{align*}
& f(\theta)=\frac{1+\sin \theta}{\cos \theta} \tag{3marks}\\
& f(x)=\left(5 x^{4}-3 x^{-2}+6 x+11\right)^{10} \tag{3marks}\\
& f(\theta)=\tan 4 \theta e^{k \theta} \tag{3marks}
\end{align*}
$$

b. The parametric equations for the motion of a charged particle released from rest in electric and magnetic fields at right angles to each other take the forms

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta)
$$

Show that the tangent to the curve has slope $\cot \left(\frac{\theta}{2}\right)$. Use this result at a few calculated values of x and y to sketch the form of the particle's trajectory.
(11 marks)

QUESTION THREE

a. Apply the appropriate technique to evaluate the following
i. $\quad \int x \sqrt{3 x+3} d x$
(4 marks)
ii. $\int x^{3} e^{x} d x$
iii. $\int \frac{\left(x^{2}-3\right) d x}{\left(x^{2}-1\right)(x-3)}$
b. By integrating by parts twice, prove that $I n$ as defined in the first equalitybelow for positive integers n has the value given in the second equality:

$$
\begin{equation*}
I=\int_{0}^{\frac{\pi}{2}} \sin n \theta \cos \theta d \theta=\frac{n-\sin \left(\frac{n \pi}{2}\right)}{n^{2}-1} \tag{8marks}
\end{equation*}
$$

QUESTION FOUR

a. Prove that $\sum_{n=2}^{\infty} \ln \left[\frac{n^{r}+(-1)^{n}}{n^{r}}\right]$ is absolutely convergent for $r=2$, but only conditionally convergent for $r=1$.
b. Determine the range of values of x for which the following power series converges
c. A Fabry-P'erot interferometer consists of two parallel heavily silvered glass plates. Light enters normally to the plates, and undergoes repeated reflections between them, with a small transmitted fraction emerging at each reflection.
Find the intensity $|B|^{2}$ of the emerging wave, where $B=A(1-r) \sum_{n=0}^{\infty} r^{n} e^{i n \phi}$ with r and ϕ being real.

QUESTION FIVE

a. i. Find the angle between the vectors $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$. (3 marks)
i. Using the vector method, derive the law of cosines and law of sines (6 marks)
b. In a crystal with a face-centred cubic structure, the basic cell can be taken asa cube of edge a with its centre at the origin of coordinates and its edges parallelto the Cartesian coordinate axes; atoms are sited at the eight corners and at thecentre of each face.
However, other basic cells are possible. One is the rhomboidwhich has the three vectors b, c and \mathbf{d} as edges.
i. Show that the volume of the rhomboid is one-quarter that of the cube. (6 marks)
ii. Show that the angles between pairs of edges of the rhomboid are 60° and that the corresponding angles between pairs of edges of the rhomboid defined bythe reciprocal vectors to \mathbf{b}, \mathbf{c}, dare each 109.5°.
(5 marks)

