

BONDO UNIVERSITY COLLEGE UNIVERSITY EXAMINATION 2012/2013 1ST YEAR 2ND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE WITH IT (REGULAR)

COURSE CODE: SCH 104

TITLE: BASIC ANALYTICAL CHEMISTRY

DATE: 30/11/2012 TIME: 8.00-10.00AM

DURATION: 2HOURS

INSTRUCTIONS

- 1) This paper contains FIVE [5] questions.
- 2) Answer question ONE [1] COMPULSORY and ANY other TWO [2] questions.
- 3) Write ALL answers in the booklet provided.

Section A This section contains ONE COMPULSORY question

QUESTION 1 (Compulsory -30 marks)

- a) Explain each of the following terms (7 marks)
 - i. Quantitative data
 - ii. Fundamental units
 - iii. Precipitation
 - iv. Common ion effect
 - v. Co-precipitation
 - vi. Limiting reagent
 - vii. isotopes
- b) The mass of a hydrogen atom is 1.67×10^{-18} micrograms. What is the mass in pounds? (2 marks)
- c) The acceleration an object is stated as 32.3 ft/s². What is the acceleration in/h? (3 marks)
- d) Replicate measurements are given as 2.680, 2.681, 2.680, 2,679 and 2.80 g. If the true value is 2.525 g. Calculate;
 - a. The accuracy (2 marks)
 - b. Precision (2 marks)
- e) Predict whether precipitation takes place when the following pairs of solutions are mixed. Write the ionic equation where applicable: Lead(II) acetate + calcium hydroxide (2 marks)
- f) Naturally occurring sample of copper consists of 69.17% copper-63 which has an atomic mass of 62.9296 a.m.u. and 30.83% of copper-65 which has atomic mass of 64.9278 a.m.u. determine the relative atomic mass (R.A.M.) of copper. (3 marks)
- g) Calculate the solubility product of silver chromate given that its solubility is 2.5×10^{-2} g/L. (RFM of Ag₂CrO₄ = 331.7) (6 marks)
- h) Determine the pH of a solution of ammonia containing 1.22 x 10⁻⁵ mol/L of OH⁻ ions

<u>Section B:</u> This section contains FOUR questions. Answer ONLY TWO questions. QUESTION TWO (Optional, 20 marks)

- a) Discuss factors the influence solubility of a compound
- b) When KCl solution is added to a solution of AgNO₃, a white precipitate is formed which dissolves in excess ammonia. Explain. (4 marks
- c) The solubility product of CuS is $8.5 \times 10^{-45} \, \text{mol}^2/\text{L}^2$ and that of FeS is $1.5 \times 10^{-19} \, \text{mol}^2/\text{L}^2$. Briefly explain how a mixture of Cu(II) ions and Fe(II) ions may be separated using sulphide precipitation from a 0.01 M solution of metal ions in 0.25 M HCl. (8 marks)

QUESTION THREE (Optional, 20 marks)

- a) A quarter tea spoonful (tsp) of a typical baking powder contains 0.4 g of NaHCo3.
 - i. Calculate the molar mass of NaHCO₃ (2 marks)
 - ii. Write the conversion factors that relate moles of NaHCO3 and mass in grams of NaHCO₃. (2 marks)
 - iii. Calculate the number of moles of NaHCO₃ in 2.5 tsp of NaHCO₃ (3 marks)

- b) Tetraphosphorus decaoxide, P_4O_{10} may be obtainined by combusition of phosphorus in oxygen. Determin the maximum mass of the oxide in tonnes that could be produced from 1.09 x 104 kg of phosphorus. (7 marks)
- c) Melamine is a compound used to in making melamine-formaldehyde resins in very hard surface materials such as FormicaTM. It consists og 6.63% carbon, 4.80% hydrogen and the rest is nitrogen. If the molecular mass of melamine is 126.121 determine the molecular formula of the compound. (6 marks)

QUESTION FOUR (Optional, 20 marks)

Aniline, C6H5NH2, is used to make many different chemicals, including dyes, photographic chemicals, antioxidants, explosives, and herbicides. It can be formed from nitrobenzene, C2H5NO2, in the following reaction with iron(II) chloride as a catalyst.

$$4C_6H_5NO_2 + 9Fe + 4H_2O \xrightarrow{FeCl_2} 4C_6H_5NH_2 + 3Fe_3O_4$$

- a. What is the maximum mass of aniline, C6H5NH2, in kg which can be formed from 810.5 kg of nitrobenzene, C6H5NO₂, with 985.0 kg f of Fe and 250 kg of H₂O? (10 marks)
- b. Identify the excess reagent(s) in question 5(a) above and explain why the reagent(s) was/were chosen to be in excess. (2 marks)
- c. If 478.2 kg of aniline, C6H5NH2, are isolated from the reaction in 5(a) above, what is the percent yield? (2 marks)
- d. Explain why the actual yield in a chemical reaction is less than the theoretical yield.

 (4 marks)
- e. Does the reactant in excess affect the actual yield for a reaction? If it does, explain how. (2 marks)

QUESTION FIVE (Optional, 20 marks)

- a) The dissociation constant of ammonia is 1.8 x 10-5. Determine:
 - i. The degree of dissociation of ammonia in a 0.1 M NH3 the concentration of OH⁻ ions in 0.1 M ammonia solution (4 marks)
 - ii. Percentage change in The degree of dissociation and concentration of OHions by addition of 0.5 M NH_4Cl to 1 L of solution in above (4 marks)
 - iii. The volume of 3.6 x 10-5 M HCl necessary to neutralize the ammonium solution in (a)ii) above (3 marks)
- b) Given $K_{sp(Mg(OH)2)}$ is 1.5 x $10^{\text{-}11}~\text{mol}^2/\text{L}^2$
 - i. Establish the minimum concentration and pH necessary to prevent precipitation of Mg(OH)₂ from 0.1 M mg²⁺ ions from solution (4 marks)
 - ii. Establish how much NH₄Cl should be added if 0.1 M NH₃ is used.

(5 marks)

LIST OF CHEMICAL ELEMENTS

Element	Symbol	Atomic no.	Atomic weight	Element	Symbol	Atomic no.	Atomic weight
Actinium	Ac	89	(227)	Mercury	Hg	80	200.59
Aluminium	Al	13	26.981 539	Molybdenum	Mo	42	95.94
Americium	Am	95	(243)	Neodymium	Nd	60	144.24
Antimony	Sb	51	121.75	Neon	Ne	10	20.1797
Argon	Ar	18	39.948	Neptunium	Np	93	(237)
Arsenic	As	33	74.921 59	Nickel	Ni	28	58.69
Astatine	Aı	85	(210)	Niobium	Nb	4t	92.906 38
Barium	Ba	56	137.327	Nitrogen	N	7	14.006 74
Berkelium	Bk	97	(247)	Nobelium	No	102	(255)
Beryllium	Be	4	9.012 182	Osmium	Os	76	190.2
Bismuth	Bi	83	208.980 37	Oxygen	O	8	15.9994
Boron	В	5	10.811	Palladium	Pd	46	106.42
Bromine	Br	35	79.904	Phosphorus	P	15	30.973 762
Cadmium	Cd	48	112.411	Platinum	Pt	78	195.08
Caesium	Cs	55	132.90543	Plutonium	Pu	94	(244)
Calcium	Ca	20	40.078	Polonium	Po	84	(209)
Californium	Cf	98	(251)	Potassium	K	19	39.098 3
Carbon	C	6	12.011	Praseodymium	Pr	59	140.90765
Cerium	Ce	58	140.115	Promethium	Pm	61	(145)
Chlorine	Cl	17	35.4527	Protactinium	Pa	91	231.035
Chromium	Cr	24	51.9961	Radium	Ra	88	226.0254
Cobalt	Co	27	58.933 20	Radon	Rn	86	(222)
Copper	Cu	29	63.546	Rhenium	Re	75	186.207
Curium	Cm	96	(247)	Rhodium	Rh	45	102.905 50
Dysprosium	Dy	66	162.50	Rubidium	Rb	37	85.4678
Einsteinium	Es	99	(254)	Ruthenium	Ru	44	101.07
Erbium	Er	68	167.26	Samarium	Sm	62	150.36
Europium	Eu	63	151.965	Scandium	Sc	21	44.955 910
Fermiu m	Fm	100	(257)	Selenium	Se	34	78.96
Fluorine	F	9	18.998 403 2	Silicon	Si	14	28.0855
Francium	Fr	87	(223)	Silver	Ag	47	107.8682
Gadolinium	Gd	64	157.25	Sodium	Na	11	22.989 768
Gallium	Ga	31	69.723	Strontium	Sr	38	87.62
Germanium	Ge	32	72.61	Sulphur	S	16	32.066
Gold	Au	79	196.966 54	Tantalum	Ta	73	180.9479
Hafnium	Hf	72	178.49	Technetium	Tc	43	(97)
Helium	He	2	4.002 602	Tellurium	Te	52	127.60
Holmium	Ho	67	164.93032	Terbium	Tb	65	158.925 34
Hydrogen	H	1	1.007 94	Thallium	TI	81	204.3833
lodine	1	53	126.904 47	Thulium	Tm	69	168.934 21
Indium	In	49	114.82	Thorium	Th	90	232.038 1
Iridium	1r	77	192.22	Tin	S n	50	118.710
lron	Fe	26	55.847	Titanium	Ti	22	47.88
Krypton	Kr	36	83.80	Tungsten	w	74	183.85
Lanthanum	La	57	138.905 5	Uranium	U	92	238.0289
Lawrencium	Lr	103	(260)	Vanadium	v	23	50.941 5
Lead	Pb	82	207.2	Xenon	Xe	54	131.29
Lithium	Li	3	6.941	Ytterbium	Yb	70	173.04
Lutețium	Lu	71	174.967	Yttrium	Y	39	88.905 85
Magnesium	Mg	12	24.3050	Zinc	Zn	30	65.38
Manganese	Mn	25	54.938 05	Zirconium	Zr	40	91.224
Mendelevium	Md	101	(258)				