

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BUSINESS & ECONOMICS

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF BUSINESS ADMINISTRATION WITH IT

2^{ND} Tyear 1^{ST} SEMESTER 2015/2016 ACADEMIC YEAR

MAIN CAMPUS - RESIT

COURSE CODE: ABA 205

COURSE TITLE: MANAGEMENT MATHEMATICS II

EXAM VENUE: LAB 1 STREAM: (BBA)

DATE: 04/05/16 EXAM SESSION: 9.00 – 11.00 AM

TIME: 2 HOURS

Instructions:

- 1. Answer Question ONE (COMPULSORY) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE

- **a.** The demand and supply equations for a certain commodity are 3p+5x=200 and 7p-3x=56, respectively. Use matrices to find the value of **x** and **p** at the market equilibrium. (6mks)
- **b.** State the characteristics of the Dual problem in Linear Programming. (5mks)
- **c.** Explain the purposes of Input –Output Analysis. (7mks)
- **d.** Determine the local and global optimum and their nature for the following function.

$$F(x) = 1/3x^3 - 4x^2 + 12x + 2 \qquad 0 \le x \le 10$$
 (12mks)

QUESTION TWO

a. Marginal cost function for a firm at the production level \mathbf{x} is given by

$$C'(X)=23.5-0.01X$$

Find the increase in total cost when the production level is increased from 1000 to 1500 units.

(16mks)

b. Explain four applications of Matrices in business.

(4mk)

OUESTION THREE

The cost accountant of a firm producing colour television has worked out the

Total cost function for the firm to be $C = 120Q - Q^2 + 0.02Q$ where C is the total cost and Q the quantity produced. And sales manager has provided the sales forecasting function as P=114-0.25Q where P is the price and Q the quantity sold.

Required:

- a) Find the level of production that will yield minimum average cost per unit and determine whether this level of output maximizes profit for the firm. (15mks)
- b) Determine the maximum revenue for this firm.

(5mks)

QUESTION FOUR

a. The state -transition matrix for retentions, gains, and losses of firms A, B and C is given below. Using this matix, determine the steady the steady state equilibrium conditions: (16mks)

TO			
From	A	В	C
A	0.700	0.100	0.200
В	0.100	0.800	0.100
C	0.200	0.100	0.700

b. State two conditions that must be satisfied for linear programming to be used in optimization of problems. (4mks)

QUESTION FIVE

a) XYZ Chemical Company is producing two products A and B. The processing times are 3 hour and 4 hours per unit for A on operations one and two respectively and 4 hours and 5 hours per unit for B on operations one and two respectively. The available time is 18 hours and 21 hours for operation one and two respectively. The product A can be sold at sh.3 profit per unit and B at sh.8 per unit .Solve for maximum profit programme.(only formulate the problem) (8mks)

b) Distinguish between the following terms:

i. Slack and Surplus variables. (4mks)

ii. Point of inflection and Global maxima. (4mks)

iii. Duality and unrestricted variable. (4mks)