BONDO UNIVERSITY COLLEGE

UNIVERSITY EXAMINATION 2012/2013
2^{ND} YEAR 2ND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE WITH IT (REGULAR)

COURSE CODE: SCH 206
TITLE: ORGANIC CHEMI9STRY II
DATE: 30/11/2012
TIME: 15.00-17.00PM
DURATION: 2HOURS

INSTRUCTIONS

1) Answer ALL questions in section A
2) Answer any TWO questions in section
3) Use illustrations where appropriate

Section A This section contains ONE COMPULSORY question

QUESTION 1

(a) Write brief notes on benzene.
(b) Give a brief history on the structure of benzene.
(c) Give the IUPAC names of the following compounds;

A

B

C

D

E
(d) (i) Define the term bond dissociation energy.
(ii) Using examples, describe the conditions under which bond dissociation energies can be used to calculate enthalpy (H) of a reaction.
(e) Complete the following reactions giving the necessary reagents and reaction conditions. (4 marks)

(ii)

(f) Give the mechanism for the reactions in (d) (i) and (ii) above.
(i) Assign R,S configurations to the stereogenic centres in the following molecules: (3 marks)
(i)

(ii)

QUESTION 2

(a) Which of the following compounds/ions are aromatic? Explain your answer.
(i)

(ii)

(iv) Θ
(v)

(b) Rank the following in order of decreasing nucleophilicity. Give reason(s) for your answer.

$$
\mathrm{CF}_{3}-\mathrm{CH}_{2} \mathrm{O}, \quad \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{O}, \quad \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{S}
$$

(c) Propose a mechanism to account for the following reaction; show the structure(s) of all intermediates and use curly arrows to indicate the flow of electrons in each step. (6 marks) (6 marks)

(d) Comment on the percentage composition of products; I, II and III

QUESTION 3

(a) What major products would you expect from these reactions; Explain. (6 marks)
(i)

(ii)

(iii)

(b) Illustrate using examples any two ways by which arenes can be prepared.
(c) Define the following terms;
(i) Racemic modification
(ii) Stereogenic centre
(iii) Meso compound
(iv) Enantiometrically pure substances
(v) Solvolysis reaction
(d) Complete the following reactions;
(i)

(ii)

QUESTION 4

(a) Define the following terms;
(i) A non-benzenoid aromatic compound
(ii) Equatorial bond
(iii) Hyperconjugation
(iv) Aromaticity
(b) Account for the following facts;
(i) RS^{-}ions are stronger nucleophiles than RO^{-}ions.
(ii) A racemic mixture shows no optical activity.
(iii) Free radicals and carbocations are electrophiles.
(c) Given the following bond enthalpies in $\mathrm{kJ} \mathrm{mol}^{-1}: \mathrm{C}-\mathrm{H}: 412, \mathrm{C}-\mathrm{C}: 348$ and $\mathrm{H}-\mathrm{H}: 436$.

Calculate the enthalpy of formation of propane if the enthalpy of atomization of carbon (grahite) is $715 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(d) Consider the reaction below;

How many stereoisomers of the product are possible? Draw them. Are the products optically active?

QUESTION 5

(a) Calculate the heat of reaction (H) for the following reactions, assuming that in both reactions, bond breakage is homolytic. Comment on the answer.

$$
\begin{aligned}
& \text { (i) } \mathrm{CH}_{3}-\mathrm{H}+\mathrm{Cl}_{3} \longrightarrow \mathrm{CH}_{3}-\mathrm{Cl} \quad \cdot \quad-\mathrm{Cl} \\
& D=436.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad D=243.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad D=352.8 \mathrm{k} \mathrm{~J} \mathrm{~mol}^{-1} \quad D=432.6 \mathrm{k} \mathrm{~J} \mathrm{~mol}^{-1} \\
& \text { (ii) } \mathrm{CH}_{3}-\mathrm{H}+\mathrm{Br}-\mathrm{Br} \longrightarrow \mathrm{CH}_{3}-\mathrm{Br}+\quad \mathrm{H}-\mathrm{Br} \\
& D=436.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad D=193.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad D=249.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad D=369.9 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(b) Illustrate keto-enol tautomerism using the reaction of propanone with water. (5 marks)
(c) The following is an illustration of some of the major reactions of benzene.

(i) Give the structures of the compounds $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(4 marks)
(ii) Give the product of nitration of C. Comment on your answer. (2 marks)
(iii) Give the reagents and the conditions for the reaction I, II, III. (4 marks)

$$
E * * * * * * * * * * * N * * * * * * * * * * * D
$$

