JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL $2^{\text {TH }}$ YEAR $1^{\text {ST }}$ SEMESTER 2015/2016 ACADEMIC YEAR MAIN CAMPUS - RESIT

COURSE CODE: SMA 100
COURSE TITLE BASIC MATHEMATICS

EXAM VENUE: LAB 1
DATE: 04/5/16
STREAM: (BSc. Actuarial/BED)
EXAM SESSION: 9.00-11.00 AM

TIME: 2.00 HOURS

Instructions:

1. Answer question $\mathbf{1}$ (Compulsory) and ANY other $\mathbf{2}$ questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question1[30 marks] COMPULSORY

(a) (i) Given $g(m)=8^{m}-1$, express $g(1), g(2), g(3)$ as multiples of 7 .
(ii) Prove that $g(m)=8^{m}-1: m=1,2,3, \ldots \ldots$ is divisible by 7 [8 marks]
(b) (i) Solve $\sin \theta=\frac{1}{2}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(ii) Solve $\cos 2 \theta=\frac{1}{2}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
[5 marks]
(c) Evaluate 5 in $\bmod (4), 5^{6}$ in $\bmod (7)$ and 12^{15} in $\bmod (15)$
[7 marks]
(d) Determine the constant term in the binomial expansion $\left(2 x-\frac{5}{x}\right)^{20} \quad[5$ marks] Simplify the value of the constant.
(e) (i) Determine the value of $\log _{21} 2150$
(ii) Simplify $\log _{21} 9261+\log _{194481} 21$
[5 marks]

Question2 [20 marks]

.(a.) If $Z_{1}=\frac{1}{2}+\frac{1}{2} i, Z_{2}=2+2 i \quad$ express the complex numbers $Z_{1}, Z_{1}^{10}, Z_{2}, Z_{2}^{10}$ in the form $Z=r(\cos \theta+i \sin \theta)$.
(b) On same Argand plane, plot the complex numbers $Z_{1}, Z_{1}^{10}, Z_{2}, Z_{2}{ }^{10}$. Determine the effect of raising a complex number to a positive power.
(c) Define a relation \mid on Z,the set of integers, by $m \square n$ if $m-n$ is divisible by 5 .Show that (i) \sqcup is reflexive (ii) \sqcup is symmetric (iii) \sqcup is transitive
(iv) \sqcup defines an equivalence relation on Z

Question3 [20 marks]

(i) Show that $\sin (x+y)-\sin (x-y)=2 \sin y \cos x$
[3 marks]
(a)
(ii) Prove that $\frac{\sin (2 x+x)}{1+2 \cos 2 x}=\sin x$
[4 marks]
(b) Given the multiplication in $Z / 7$ as shown below.

\times	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2					
3	3		2			
4	4					
5	5				4	
6	6					1

(i) Complete the multiplication table
(ii) Show that $(5 \times 4) \times 6=5 \times(4 \times 6)$
(iii) State the neutral element
(iv) Determine the inverse of each element.

Question4 [20 marks]

(a) Given the matrices $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ -2 & 1 & 1 \\ -1 & 2 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}a \\ b \\ c\end{array}\right], C=\left[\begin{array}{l}16 \\ 0 \\ 8\end{array}\right]$
(i). Compute $\operatorname{det} A$
(ii). Show that $\operatorname{det} A \neq 0$
(iii). Express the augmented matrix for the system $A X=B \quad$ as $|A \quad| B \mid$
(iv). Row reduce the augmented matrix till you obtain $\left.\left|\begin{array}{l}I_{3 \times 3}\end{array}\right| \begin{aligned} & \alpha_{11} a+\alpha_{12} b+\alpha_{13} c \\ & \alpha_{21} a+\alpha_{22} b+\alpha_{23} c \\ & \alpha_{31} a+\alpha_{32} b+\alpha_{33} c\end{aligned} \right\rvert\,$
(v) Show that $\left[\begin{array}{lll}\alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33}\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 2 \\ -2 & 1 & 1 \\ -1 & 2 & 1\end{array}\right]=I_{3 \times 3}$ the identity matrix, and give the inverse of A.
(vi) Using part (iv) above solve the equation $A X=C$. [15 marks]
(b) Find x if $\sqrt{3} \sin x-\cos x=1: 0^{\circ} \leq x \leq 360^{\circ}$
[5 marks]

Question5[20 marks]

(a) Expand $(1+x)^{1 / 2}$ as far as x^{5} term. Use a suitable value of x in the expansion of $(1+x)^{1 / 2}$ to approximate the value of $\sqrt{105}$ correct to five decimal places. Compute the relative percentage error in the approximation of $\sqrt{105}$.
(b) Prove by induction that $1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=(1+2+3+\ldots .+n)^{2}: n=1,2,3, \ldots \quad[8$ marks $]$

