JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
ACTUARIAL
$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2015/2016 ACADEMIC YEAR
MAIN CAMPUS - RESIT

COURSE CODE: SMA 103
COURSE TITLE: LINEAR ALGEBRA 1
EXAM VENUE: LAB 1
STREAM: (BSc. Actuarial/BED)
DATE: 06/05/16
EXAM SESSION: 11.30-1.30 PM

TIME: 2.00 HOURS

Instructions:

1. Answer question $\mathbf{1}$ (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Show all the necessary working

Question1 [30marks] Compulsory

(a) Define the vector subspaces H_{1}, H_{2} of vector space R^{3} by, $H_{1}=\{(x, y, z): x+2 y+2 z=0\}$, $H_{2}=\{(x, y, z): 2 x+2 y-8 z=0\}$.
(i) Verify that both H_{1}, H_{2} do contain the zero vector.
(ii) Find bases for H_{1}, H_{2}.
(b) Suppose the mapping $L: R^{3} \rightarrow R^{3}$ with $L\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x-y-z \\ x+y+z \\ z\end{array}\right]$
(i) Show that L is linear. (ii)Determine ker (L) and $\operatorname{Im}(L)$.
(c) Given the system of linear equations

$$
\begin{aligned}
& 2 x+y=70 \\
& 5 x+3 y=20
\end{aligned}
$$

(i) express it in the matrix form $A \underset{\sim}{X}=\underset{\sim}{b}$
(ii) apply the elementary matrix row reduction operations on the associated augmented matrix;
$A: I: \underset{\sim}{b}$ to reduce to the final form $I: \bar{A}: \underset{\sim}{b}$ where I is the two by two identity matrix. Compute matrix products $A \widehat{A}, \widehat{A} A$ and hence obtain A^{-1} and $\underset{\sim}{X}$.
(d) Let $P=\left[\begin{array}{ll}4 & 5 \\ 1 & 1\end{array}\right], R=\left[\begin{array}{ll}0 & 5 \\ 2 & 1\end{array}\right]$
(i) Determine whether or not P, or R are singular.
(ii) Compute the matrices $P R, P^{-1}, R^{-1}$ and show that $[P R]^{-1}=R^{-1} P^{-1}$.

Question2 [20marks]

(a) Given matrix $M=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$
(i) Show that $M^{2}=4 I_{4 \times 4}$ and hence find M^{-1}, the inverse of M.
(ii) Show that the following vectors $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ -1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ -1 \\ -1 \\ 1\end{array}\right]$ are linearly independent.
[11 marks]
(b) Suppose $T:[x, y, z] \rightarrow[x, x-y, y]$. Construct matrix A of linear mapping T with respect to an ordered basis for basis for R^{3}.

Question3 [20marks]

(a) Without using direct computation , show that $\left(\begin{array}{l}1 \\ 2 \\ -2\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are eigenvectors of the matrix $A=\left(\begin{array}{ccc}1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5\end{array}\right)$. Give the associated eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of this matrix. Verify that $\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}$
(b) Find the coordinates vector
$v_{0}=[1,1,5]$ with respect to the ordered basis

$$
\{[1,1,0],[1,2,0],[1,2,1]\}
$$

[8 marks]

Question4 [20marks]

Define a linear mapping T from vector space X into vector space Y i.e. $T: X \rightarrow Y$
(a) Explain what is meant by (i)kernel of T (ii)image of T (iii)rank of T (iv) nullity of T [8 marks]
(b) State the relationship between dimension of kernel of T and rank of T
[2 marks]
(c) For matrix. $M=\left(\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ determine adjoint of M and hence state $M^{-1} \quad$ [10 marks]

Question5 [20marks]

Let $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right)$ be a matrix of linear transformation T.
(a) Determine kernel of T [6 marks]
(b) Determine range of T [4 marks]
(c) State nullity and rank of T
[4 marks]
(d) Determine which of the vectors $[-1,1,-1],[1,0,0]$ belong to the kernel of T. [6 marks]

