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Instructions: 

1. Answer question  1 (Compulsory) and ANY other 2 questions  

2. Candidates are advised not to write on the question paper. 

3. Candidates must hand in their answer booklets to the invigilator while in the examination 

room. 
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Question1 [30marks] Compulsory 

(a) Define the vector subspaces
1H ,

2H  of vector space 3R  by , 
  1 , , : 2 2 0H x y z x y z   

,
 

  2 , , : 2 2 8 0H x y z x y z   
. 

(i)  Verify that both 
1H ,

2H  do contain the zero vector.     [2 marks] 

(ii) Find bases for 
1H ,

2H .        [4 marks] 

(b) Suppose the mapping 3 3:L R R  with 

x x y z

L y x y z

z z

    
   

  
   
      

  

(i) Show that L is linear. (ii)Determine ker (L) and Im(L).     [8 marks] 

 

 (c) Given the system of linear equations 

      2 70x y   

      5 3 20x y   

(i) express it in the matrix form AX b  

(ii) apply the elementary matrix row reduction operations  on the associated augmented 

matrix;   

   A : I : b  to reduce to the final  form I : A :b where I is the two by two identity matrix. 

Compute  matrix products  ,AA AAand hence obtain 1A  and X .  [9 marks] 

(d) Let 
4 5 0 5

,
1 1 2 1

P R
   

    
   

 

(i) Determine whether or not ,P or R  are singular.      [3 marks] 

(ii) Compute the matrices PR , 1P , 1R and show that  
1 1 1PR R P
   .                  [4marks] 
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Question2 [20marks] 

(a) Given matrix

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

M

 
 

 
 
  
 

  

 

(i) Show that  2

4 44M I  and hence find 1M  , the inverse of M . 

(ii) Show that the following vectors 

1

1

1

1

 
 
 
 
 
 

,

1

1

1

1

 
 
 
 
 
 

,

1

1

1

1

 
 

 
 
 
 

,

1

1

1

1

 
 

 
 
 
 

 

are linearly independent.                     [11 marks] 

 

 

 (b) Suppose    : , , , ,T x y z x x y y  . Construct matrix A of linear mapping T  with 

respect to an ordered basis for  basis for 3R .                                           [9 marks]  

 

Question3 [20marks]  

(a) Without using direct computation , show that 

1

2

2

 
 
 
  

 ,

1 1

1 , 0

0 1

   
   
   
   
   

are eigenvectors of 

the matrix 

1 - 4  - 4

8  - 11 -  8

-8  8    5

A

 
 

  
 
 

. Give the associated eigenvalues
1 2 3, ,   of this matrix. 

Verify that   1 2 3trace A             [12 marks] 

  

(b) Find the coordinates vector
          0 1,1,5v   with respect to the ordered basis 

      1,1,0 , 1,2,0 , 1,2,1
         [8 marks] 

 

Question4 [20marks]  

  Define a linear mapping T  from  vector space X into vector space Y i.e. :T X Y  

(a) Explain what is meant by (i)kernel of T (ii)image ofT  (iii)rank  of T (iv) nullity of  T  

                      [8 marks] 

(b) State the relationship between dimension of kernel of T and rank  of T  [2 marks] 
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(c) For matrix. 

1 2 2

1 1 0

1 0 1

M

 
 

  
 
 

 determine adjoint of  M and hence state 1M    [10 marks] 

Question5 [20marks]  

Let   

1 2 1

0 1 1

1 3 4

A

 
 

  
  

be a matrix of linear transformationT . 

(a) Determine kernel of T                   [6 marks] 

(b) Determine range of T         [4 marks] 

(c) State nullity  and rank of T                [4 marks] 

(d) Determine which of the vectors  1,1, 1 
,
 1,0,0  belong to the kernel of T .    [6 marks] 


