

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 2TH YEAR 1ST SEMESTER 2015/2016 ACADEMIC YEAR

MAIN CAMPUS - RESIT

COURSE CODE: SMA 201

COURSE TITLE: LINEAR ALGEBRA II

EXAM VENUE: LAB 1

STREAM: (BSc. Actuarial/BED)

DATE: /5/16

EXAM SESSION: 9.00 – 11.00 AM

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question1 [30marks] Compulsory

(a) Define a linear mapping *T* from an m-dimensional vector space *X* into n-dimensional vector space *Y* over the real field *F*. Let $B = \{u_1, u_2, u_3, \dots, u_m\}, \Psi = \{v_1, v_2, v_3, \dots, v_n\}$ be the bases for the respective vector spaces *X* and *Y*. Construct matrix M of *T* with respect to the ordered bases *B*, Ψ . [10 marks]

(b) Let
$$P = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 2 & 1 \\ -2 & 1 & 2 \end{pmatrix}$$
 be a real square matrix.

Prove that P is orthogonal hence find P^{-1} , and \hat{P} the orthonormalized form of P .[10marks] (c) Let U be a vector space over field F of complex numbers.

Suppose $a, b, c, d \in U$; $k, l \in F$.

(i) Define a rule *, on U together with F for which * is known as an inner product on U.

(ii) Show that the rule \oplus , defined on the R^2 vector space by : $\begin{pmatrix} x \\ y \end{pmatrix} \oplus \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = xx_1 + yy_1$ is an inner product. . [10marks]

Question2 [20marks]

Given the vectors $b_1 = [3,0,4]$, $b_2 = [-1,0,7]$, $b_3 = [2,9,11]$ of vector space R^3 with the standard inner product.

(i) Show that $b_1 = [3,0,4], b_2 = [-1,0,7], b_3 = [2,9,11]$ are linearly independent.

(ii)Apply the Gram-Schmidt process to the vectors $b_1 = [3,0,4], b_2 = [-1,0,7], b_3 = [2,9,11]$ to

obtain the corresponding orthogonal set of vectors a_1 , a_2 , a_3 given.

Question3 [20marks]

Let *W* be the space of all 3×3 matrices *A* over *R* which are skew- symmetric *i.e.*, $A^t = -A$. We equip *W* with the inner product $[A * B] = \frac{1}{2} tr [AB^t]$. Let *V* be the vector space R^3 with the standard inner product. If *T* be the mapping from *V* into *W* defined by

$$T(x, y, z) = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} i.e. T: V \rightarrow W$$

(a)Show that $T(0_V) = 0_W$

(b)Show that T is linear

Question4 [20marks]

Define a linear mapping *T* from an m-dimensional vector space *X* into n-dimensional vector space *Y* over the real field *F*. Let $B = \{u_1, u_2, u_3, \dots, u_m\}, \Psi = \{v_1, v_2, v_3, \dots, v_n\}$ be the bases for the respective vector spaces *X* and *Y*.

(i)Construct matrix M_T of T with respect to the ordered bases B, Ψ . [12marks]

(ii) Determine the kernel of *T* [8marks]

Question5 [20marks]

(a) The matrix $A = \begin{pmatrix} 8 & -2 & -3 & 1 \\ 7 & -1 & -3 & 1 \\ 6 & -2 & -1 & 1 \\ 5 & -2 & -3 & 4 \end{pmatrix}$ of linear transformation *T* has eigenvectors $v_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^t$, $v_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}^t$, $v_3 = \begin{bmatrix} 2 & 5 & 2 & 2 \end{bmatrix}^t$. Determine all the eigenvalues [13 marks]

Determine all the remaining eigenvectors of T[13 marks](b) Diagonalize matrix A[7 marks]