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Question1 [30marks] Compulsory 

(a) Define a linear mapping T  from an m-dimensional  vector space X into n-dimensional  vector 

space Y over the real field F . Let  1 2 3, , ,.........., mB u u u u ,  1 2 3, , ,..........,  nv v v v be the 

bases for the respective vector spaces X and  Y .Construct  matrix M of  T with respect to the 

ordered bases , B .        [10 marks] 

    (b)  Let 

1 2 2

2 2 1

2 1 2

 
 

  
  

P  be a real square matrix. 

  Prove that P   is orthogonal hence  find 
1P , and P̂ the  orthonormalized form of P  .[10marks]  

(c) Let U  be  a vector space over field F  of complex numbers.  

Suppose , , , ; , a b c d U k l F . 

(i) Define a rule  , on  U together with F  for which   is known as an inner product on 

U .  

(ii) Show that the rule , defined on the 2R vector space by : 
1

1 1

1

  
    

   

xx
xx yy

y y
 is 

an inner product. .       [10marks] 

 

 

 

 

 

 

 

Question2 [20marks]  

Given  the vectors      1 2 33,0,4 , 1,0,7 , 2,9,11   b b b  of vector space 
3R with the 

standard inner product. 

(i) Show that       1 2 33,0,4 , 1,0,7 , 2,9,11   b b b are linearly independent. 
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       (ii)Apply the Gram-Schmidt process to the vectors      1 2 33,0,4 , 1,0,7 , 2,9,11   b b b  to    

           obtain the corresponding orthogonal set of vectors 1 2 3, ,a a a  given . 

Question3 [20marks]  

 

  Let W  be the space of all 3 3  matrices A  over R which are skew-  symmetric . .,  ti e A A . 

We equip W with the inner product 
1

2
    

tA B tr AB . Let V be the vector space 3R with the 

standard inner product. If T be the mapping from V  into W  defined by  

 

0

, , 0 . . :

0

 
 

  
 
  

z y

T x y z z x i e T V W

y x

  

(a)Show that  0 0V WT  

(b)Show that T is linear 

Question4 [20marks]  

Define a linear mapping T  from an m-dimensional  vector space X into n-dimensional  vector 

space Y over the real field F . Let  1 2 3, , ,.........., mB u u u u ,  1 2 3, , ,..........,  nv v v v be the 

bases for the respective vector spaces X and  Y .  

(i)Construct  matrix TM  of  T with respect to the ordered bases , B .    [12marks] 

(ii) Determine the kernel of T                      [8marks] 

Question5 [20marks]  

(a)The matrix   

8 2 3 1

7 1 3 1

6 2 1 1

5 2 3 4

  
 

  
  
 

  

A  of linear  transformationT  has eigenvectors   1 1 , 1, 1, 1
t

v ,    

    2 1 , 1, 1, 0
t

v ,  3 2 , 5, 2, 2
t

v .  Determine all the eigenvalues [13 marks] 

 

  Determine all the remaining eigenvectors of T  .  [13 marks] 

(b) Diagonalize matrix A         [7 marks]  

 


