JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
ACTUARIAL
$2^{\text {TH }}$ YEAR $1^{\text {ST }}$ SEMESTER 2015/2016 ACADEMIC YEAR
MAIN CAMPUS - RESIT

COURSE CODE: SMA 201
COURSE TITLE: LINEAR ALGEBRA II
EXAM VENUE: LAB 1 STREAM: (BSc. Actuarial/BED)
DATE: /5/16
EXAM SESSION: 9.00-11.00 AM
TIME: 2.00 HOURS
Instructions:

1. Answer question $\mathbf{1}$ (Compulsory) and ANY other $\mathbf{2}$ questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question1 [30marks] Compulsory

(a) Define a linear mapping T from an m-dimensional vector space X into n-dimensional vector space Y over the real field F. Let $B=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots ., u_{m}\right\}, \Psi=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ be the bases for the respective vector spaces X and Y. Construct matrix M of T with respect to the ordered bases B, Ψ.
[10 marks]
(b) Let $P=\left(\begin{array}{ccc}1 & -2 & 2 \\ 2 & 2 & 1 \\ -2 & 1 & 2\end{array}\right)$ be a real square matrix.

Prove that P is orthogonal hence find P^{-1}, and \hat{P} the orthonormalized form of P.[10marks]
(c) Let U be a vector space over field F of complex numbers.

Suppose $a, b, c, d \in U ; k, l \in F$.
(i) Define a rule *, on U together with F for which * is known as an inner product on U.
(ii) Show that the rule \oplus, defined on the R^{2} vector space by : $\binom{x}{y} \oplus\binom{x_{1}}{y_{1}}=x x_{1}+y y_{1}$ is an inner product. .
[10marks]

Question2 [20marks]

Given the vectors $b_{1}=[3,0,4], b_{2}=[-1,0,7], b_{3}=[2,9,11]$ of vector space R^{3} with the standard inner product.
(i) Show that $b_{1}=[3,0,4], b_{2}=[-1,0,7], b_{3}=[2,9,11]$ are linearly independent.
(ii)Apply the Gram-Schmidt process to the vectors $b_{1}=[3,0,4], b_{2}=[-1,0,7], b_{3}=[2,9,11]$ to obtain the corresponding orthogonal set of vectors a_{1}, a_{2}, a_{3} given.

Question3 [20marks]

Let W be the space of all 3×3 matrices A over R which are skew- symmetric i.e., $A^{t}=-A$. We equip W with the inner product $[A * B]=\frac{1}{2} \operatorname{tr}\left[A B^{t}\right]$. Let V be the vector space R^{3} with the standard inner product. If T be the mapping from V into W defined by $T(x, y, z)=\left[\begin{array}{lcr}0 & -z & y \\ z & 0 & -x \\ -y & x & 0\end{array}\right]$ i.e. $T: V \rightarrow W$
(a)Show that $T\left(0_{V}\right)=0_{W}$
(b)Show that T is linear

Question4 [20marks]

Define a linear mapping T from an m-dimensional vector space X into n-dimensional vector space Y over the real field F. Let $B=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots ., u_{m}\right\}, \Psi=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots ., v_{n}\right\}$ be the bases for the respective vector spaces X and Y.
(i)Construct matrix M_{T} of T with respect to the ordered bases B, Ψ.
(ii) Determine the kernel of T

Question5 [20marks]

(a)The matrix $A=\left(\begin{array}{llll}8 & -2 & -3 & 1 \\ 7 & -1 & -3 & 1 \\ 6 & -2 & -1 & 1 \\ 5 & -2 & -3 & 4\end{array}\right)$ of linear transformation T has eigenvectors $v_{1}=\left[\begin{array}{lll}1,1,1,1\end{array}\right]^{t}$,
$v_{2}=[1,1,1,0]^{t}, v_{3}=[2,5,2,2]^{t}$. Determine all the eigenvalues [13 marks]

Determine all the remaining eigenvectors of T. [13 marks]
(b) Diagonalize matrix A

