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Question 1:[ 30  marks]   COMPULSORY 

Q1(a)  A  random variable X has  a  distribution with its probability density function given as:    
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Identify the  distribution of  X   and the parameters    and   .      (4 marks) 

 

Q1 (b)  Let   10,25X N , compute                                                                       

(i)   20P X            ( 5  marks   ) 

(ii)  5P X             ( 6  marks   ) 

(iii)  12 15P X            ( 4 marks    ) 

Q1 (c)  The joint probability density function of X andY ,is 

   , 1 , 1,0 1,0 1XYf x y k x y x y x y         . 

Obtain   

the marginal probability density function of X         ( 4 marks    ) 

 

 

Q1 (d) Consider a Poisson distributed random variable X with probability density function    
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     Verify that for such  variable X  , the    
2

E X E X                                            (7 marks).  

 
Question 2: [ 20  marks ]  

(a) Let X, be a Normally distributed random variable with parameters    and   .                                    

(i) Prove that the moment generating function of  X is:  
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 (ii) Calculate  ( )E X    ,  ( )Var X                                                               (7 marks)                 

 

(b)  Suppose  2, xX N    and   2, yY N a    and that X and Y   are independent 

        Determine the distribution of U aX bY  . 

 (  5marks ) 

Question 3: [ 20  marks ]  

 (a) Consider a Poisson distributed random variable X with probability density function    
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   Verify that for such a variable, the mean and variance are equal.                            (8 Marks).  
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(b) Suppose that flaws in plywood occur at random with an average of one flaw per 50cm2.What is the      

     probability that a 3 cm by 8cm sheet will have: 

(i) no flaws                              (3 Marks) 

(ii) at most one flaw?                                                                     (3 Mark) 

(iii) at least one flaw?                                                                     (3 Mark) 

(iv) between 1 and 4 flaws?                         (4 Marks) 

 

 

Question4: [20 marks]  

Let , ,U V and W   be   identical independently distributed(i.i.d)   1,G  random variables. Compute    

(i) the joint  p.d.f  for R U , S U V    and T U V W                (  8  marks ) 

(ii) the Jacobian of the transformation          (  4  marks ) 

(iii) the relationship  between the variables,  , ,S R T      (  2  marks ) 

(iv)  the   p.d.f  for, S           (  6  marks )  

 
Question 5:[ 20  marks ]  

Let (X,Y) have a bivariate normal distribution with parameters 
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where the joint moment generating function is  
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 for all values of  1 , 2.t t   

(a) Determine  the moment generating functions  1XM t ,  2YM t  for X and Y respectively. (10marks) 

 ( b)  A random variable X is said to have a gamma distribution with parameters ,   ,denoted by 

 ,X G    ,if it has a probability density function of the form 
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Suppose  ,X G    and   ,Y G   ,  and that X and Y   are independent. 

Determine the distribution of 8 8S Y X  and obtain its  probability density function.     ( 10 marks ) 

 


