JARAMOGI OGINGA ODINGA UNIVERSITY OF

 SCIENCE AND TECHNOLOGYUNIVERSITY DRAFT RESIT/RETAKE
EXAMS 2015/2016

SEMESTER II THIRD YEAR BSc+ BEd

SMA302: LINEAR ALGEBRA III
DATE : May, 2016
TIME: 2hrs
INSTRUCTIONS

INSTRUCTIONS

Answer Question1 and two other questions
Show all the necessary working

Question1 [30 marks] COMPULSORY

(a) Let U be a linear operator on an inner product space V.Then prove that U is unitary if and only if the adjoint U^{*} of U exists and $U^{*} U=U U^{*}=I$
(b) A form on a real vector space V is a real valued function f on $V \times V$ with values in R State the axioms satisfied by f so that it is bilinear form.
(c) Let f be the form on $V \times V$ such that V is a real vector space. Define $A=\left(a_{i j}\right)$, the matrix of f w.r.t an ordered basis $\beta=\left\{\beta_{1}, \beta_{2},,, \beta_{n}\right\}$.

Suppose f is a form on R^{2} defined by
$f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{1}+4 x_{2} y_{2}+2 x_{1} y_{2}+2 x_{2} y_{1}$.
Find the matrix of f in each of the bases
(i) $\{[1,0],[0,1]\}$ (ii) $\{[1,-1],[1,1]\}$
[15 marks]

Question2[20 marks]

Find the principal values and the orthonormal principal axes the of stress if the stress tensor is

$$
T_{i, j}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

[20 marks]

Question3 [20 marks]

Consider R^{4} with the inner product
$\langle x, y\rangle=\frac{1}{2} x_{1} y_{1}+\frac{1}{2} x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} ; x=\left[x_{1}, x_{2}, x_{3}, x_{4}\right], y=\left[y_{1}, y_{2}, y_{3}, y_{3}\right], x, y \in R^{4}$
(a)Show that the vectors $\left\{v_{1}=[1,1,-1,-1], v_{2}=[1,1,1,1], v_{3}=[-1,-1,-1,1], v_{4}=[1,0,0,1]\right\}$ are linearly independent. .
[5 marks]
(b)Apply the Gram-Schmidt process to the vectors
$v_{1}=[1,1,-1,-1], v_{2}=[1,1,1,1], v_{3}=[-1,-1,-1,1], v_{4}=[1,0,0,1]$
to obtain orthogonal basis $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$.
[10 marks]
(c) Obtain an orthonormal basis of R^{4}.
[5 marks]

Question4 [20 marks]

Let W be the space of all three by three matrices A over R which are skew symmetric i.e. $A^{t}=-A$.We equip W with the inner product $\langle A, B\rangle=\frac{1}{2} \operatorname{trace}\left(A B^{t}\right)$. Let V be the space R^{3} with the standard inner product $\left\langle\left[x_{1}, x_{2}, x_{3}\right] \otimes\left[y_{1}, y_{2}, y_{3}\right]\right\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$. Let T be the linear transformation from V into W defined by
$T\left[x_{1}, x_{2}, x_{3}\right]=\left[\begin{array}{lll}0-x_{3} & x_{2} \\ x_{3} & 0-x_{1} \\ -x_{2} & x_{1} & 0\end{array}\right]$
(a) Show that T is a vector space isomorphism of V onto W..[$\mathbf{8}$ marks]
(b)Given $\left\{e_{1}, e_{2}, e_{3}\right\}$ the standard basis for R^{3}, show that the set $\left\{T e_{1}, T e_{2}, T e_{3}\right\}$ is a basis for W consisting of the matrices
$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

[7 marks]

(c)Verify that $\left\{T e_{1}, T e_{2}, T e_{3}\right\}$ is orthonormal.

.[5 marks]

Question5[20 marks]

For a given stress tensor $T_{i, j} ; T_{i, j}=T=\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 3 & -1 \\ 4 & -1 & 1\end{array}\right]$
(a) find the three basic tensor invariants $I^{(1)}{ }_{T}, I^{(2)}{ }_{T}, I^{(3)}{ }_{T}$
[12 marks
(b)show that $I^{(1)}{ }_{T}, I^{(2)}{ }_{T}, I^{(3)}{ }_{T}$ are truly invariant when the tensor is subjected to a rotation with direction cosine matrix of $l_{i, j}=L=\left[\begin{array}{ccc}\frac{1}{\sqrt{6}} & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\end{array}\right]$.

