JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY DRAFT RESITRETAKE
 EXAMS 2015/2016

SCHOOL OF MATHEMATICS ,APPLIED STAT. AND ACTUARIAL SCIENCES
SEMESTER 2 THIRD YEAR Bed EXAMS

SMA303: COMPLEX ANALYSIS 1

Time 2hours

Instructions

Answer Question1 and two other questions.
Show all the necessary working

Question1 [30 marks] Compulsory

1(a) (i) Show that $\frac{e^{i \theta}+e^{-i \theta}}{2}=\cos \theta, \frac{e^{i \theta}-e^{-i \theta}}{2 i}=\sin \theta$
(ii) Express $(-1)^{1 / 4}$ in rational Cartesian form.
(b) Prove that $[\cos \theta+i \sin \theta]^{m}=\cos m \theta+i \sin m \theta: m=0,1,2, \ldots$
(c) Determine the residues of $f(z)=\frac{1}{z^{2}+4 z+3}$
(b) (i) Find the $\lim _{z \rightarrow 10+i}\left\{\frac{z^{3}+2 z-4+i}{z+i+2}\right\}$
[2 marks]
(ii) Suppose $f(z)=z^{2}$ and $\Delta z=z-z_{0}$, determine the $\lim _{\Delta z \rightarrow 0}\left\{\frac{f(z)-f\left(z_{0}\right)}{\Delta z}\right\}$ and hence find $f^{\prime}\left(z_{0}\right)$.

Question 2 [20 marks]
(a) If $f(z)=z \bar{z}$ find $\lim _{z \rightarrow z_{0}}\left\{\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right\}$. Discuss the existence $f^{\prime}\left(z_{0}\right)$, the derivative of $f(z)$ on the complex plane.
(b) Find all the points at which the function $f(z)=x^{3}-i(1-y)^{3}$ is differentiable. [11 marks]

Question 3 [20 marks]

(a) Compute the integral of $f(z)=\left(x^{2}+y\right)+i(x y)$, from $\quad a=0$ to $b=1+i$ along the path of parabola $C: \gamma(t)=t+i t^{2}, 0 \leq t \leq 0$
[10marks]
(b)Evaluate the integral $\left[\int_{\mid z=3} \frac{\sin z}{z(z-1)} d z\right.$ where the contour of integration is the circle centre at 0 and with radius 3 followed in the positive (anticlockwise) direction.
[10marks]

Question 4 [20 marks]

(a) Evaluate the integral $\prod_{C} z^{2} d z: C$ is the curve $y=\frac{1}{x^{2}}$ from $z=1+i$ to $z=3+\frac{i}{19}$.[6 marks]
(b) Suppose that a function f is analytic in a star D. Suppose further that C is a closed contour lying in D. Prove that $\int_{-1} f(z) d z=0$. [6 marks]
(c) Determine the value of the contour integral $\int_{\left.\right|_{z=3}=3} \frac{e^{z}+\sin z}{z^{2}-25} d z$ where the contour of integration is the circle centre at 0 and with radius 3 followed in the positive (anticlockwise) direction.
[8 marks]

Question 5 [20 marks]

Given $f(z)=\tan z$
(i) Obtain the Laurent series for the complex function $f(z)$
[12 marks]
(ii) Determine the residues of $f(z)$

