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Question1 [30 marks] COMPULSORY 

 

(a) Define a relation   on Z , the set of integers, by m n if m n  is divisible by 5 . 

      Show that 

     (i)   is reflexive (ii)  is symmetric (iii)  is transitive  

    (iv)  defines an equivalence relation on Z     [4 marks] 

(b)If mod 7a b , mod 7c d and  ,7 1m   prove that 

(i) mod 7a c b d   (ii) mod 7a c b d   (iii) mod 7ma mb              [10 marks] 

 

(c) Consider the multiplication in 
7

Z  as shown below. 

  1    2    3    4    5    6 

1 

2 

3 

4 

5 

6 

1    2    3    4    5    6 

2  

3          2 

4  

5                      4                                                              

6                           1 

 

 

    (i) Complete the multiplication table 

    (ii) Show that  (5 4) 6 5 (4 6)      

    (iii) State the neutral element 

    (iv) Determine the inverse of each element.     [10marks] 

 

 

(d) Let ,G   ,  ,G   be groups defined on the sets G ,G  respectively. 

     If :G G   is a mapping defined from G intoG , state what is meant by 

 (i)   is a homomorphism 

 (ii)   is an isomorphism 

 (iii) K  is kernel of         [6 marks] 
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Question 2 [20 marks] 

Define the product x y by , x y on the set R of real numbers and the product x y by x y  on 

the set R  of nonzero real numbers . 

(a) Prove that ,R   , ,R   are groups .     [10 marks]   

(b) Suppose  : 3 ;rR R with r r R     . 

(i) show that   is a homomorphism  

(ii) show that   is a one-to-one 

(iii) determine K
 the kernel of      [10 marks]  

 

Question3 [20 marks] 

Let ,G   ,  ,H   be finite groups defined on the sets G , H with binary operations ,      

     respectively. 

     If :G H   is a homomorphism mapping defined from G into H , prove that 

    K  the kernel of   , is a normal subgroup of  G .   [20 marks] 

      

 

 

Question 4 [20 marks] 

A mapping p is defined on a set of permutations by    : 1234 2341p  . Determine the least 

positive integer m such that      : 1234 1234 ; 1 24
m

p m   . Let   : 1,2, 3,.....,
j

jp p j m   

and take 
1 2p p to mean 

1p followed by 
2p   ;   

2

1 1 1p p p  to mean 
1p followed by 

1p ; 

1 2 3p p p  to mean 
1p followed by 

2p  followed by 
3p  etc . 

Construct Cayley table for the structure ,S  where  1 2 3, , ,......, mS p p p p . 

    (i) Show that    is closed on the set S  

    (ii) Show that  
1 2 3 1 2 3( ) ( )p p p p p p      

    (iii) State the neutral element 
kp  

    (iv) Determine the inverse of each element jp .      [20 marks] 

 

 

 

Question 5 [20 marks] 

 Let ,G   , ,H   be groups defined on the setsG , H with binary operations  ,  respectively. 

 Define G H  by the ordered pair  1 1,g h for which  1 1 1 1, : ,G H g h g G h H    . 

   If      1 1 2 2 1 2 1 2 1 2 1 2, , , : , , ,g h g h g g h h g g G h h H      with , as a new binary operation     

   on G H ,   prove that  the direct product ,G H  forms a group. [20 marks] 

 

 

 

 

 

 


