JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
ACTUARIAL
SPECIAL RESIT 2015/2016 ACADEMIC YEAR
MAIN REGULAR RESIT

COURSE CODE: SMA101
COURSE TITLE: ANALYTICAL GEOMETRY
EXAM VENUE: LAB 1
STREAM: (BSc. Actuarial)
DATE: 04/05/2016
EXAM SESSION: 11.30-1.30 PM

TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY)

a) Define the Conic sections below
i)Hyperbola
ii) Ellipse
(2 marks)
b) Determine the the distance between two parallell lines $y=4 x+10$ and the line passing through the points $(0,0)$ and $(-1,-4)$
c) A line L_{1} has an equation $y=-2 x+6$. Calculate the acute angle between L_{1} and L_{2} whose equation is $\quad 3 y+2 y+6=0$
d) Calculate the area of a circle which passes through (4, 7), (-13, 0) and (11,0). (Give your area in terms of π)
e) Convert the following polar coordinates in to Cartesian coordinates
(i) $\left(-4,200^{\circ}\right)$
(ii) $\left(6,-\frac{\pi}{4}\right)$
(4 marks)
f) Use the third order matrix determinant to determine the equation of a line passing through the points $(-5,-2)$ and $(15,3)$ giving your answer in double intercept form, hence declaring the intercepts.
(4 marks)
g) Determine the centre and area of an Ellipse bounded by the lines lines $y=8, y=-2$ $x=3$ and $x=-3$.
(5 marks)

QUESTION 2(20 MARKS)

a) The equation of an ellipse is given by $72 x^{2}+50 y^{2}-432 x+400 y-352=0$

Find on the $x y$ plane
(i)The centre of the ellipse (4 marks)
(ii)The coordinates of the vertices (2 marks)
(iii) The foci (2 marks)
(iv) The eccentricity (1 mark)
(vi) The directrices (2 marks)
(vii) The area of the ellipse
b) A second degree curve is represented by the equation $x^{2}-2 x y+y^{2}-16 x-48 y=0$. By eliminating the cross product term identify the conic section hence give its equation on the $x^{\prime} y^{\prime}$ plane and state the equation of the axis.

QUESTION 3(20 MARKS)
a) The equation of a hyperbola is given as $3 x^{2}-12 x-\frac{4}{3} y^{2}-8 y-12=0$. Find
(i) The coordinate of the centre.
(ii) The foci of the hyperbola on the $x y$ plane.
(iii) The vertices on the $x y$ plane.
(iv) The asymptotes on the $x^{\prime} y^{\prime}$ plane and on the $x y$ plane.
(vi) The eccentricity
(vii) The direcrices on the $x^{\prime} y^{\prime}$ plane and on the $x y$ plane.
(4 marks)
(2 marks)
(2 marks)
(4 marks)
b) Give the cartesian equation of the following pairs of parametric equations
(i) $x=t-t^{2}, \quad y=t^{2}+t^{3}$ (2 marks)
(ii) $x=\frac{2 t}{1+t^{3}}, y=\frac{2 t^{2}}{1+t^{3}}$

QUESTION 4(20 MARKS)

a)Find the parametric equation of the following Cartesian equations
(i) $x^{3}+y^{3}=3 x y$
(ii) $x y=x-y$
(iii) $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
b) (i)A conic section has the equation $3 x^{2}+4 \sqrt{3} x y-y^{2}=7$. Rotate the axes of the conic section by eliminating the cross product term.
(ii)Identify the conic section on the new $x^{\prime} y^{\prime}$ plane
(iii) Give the coordinates of the focus/foci of the conic on the $x^{\prime} y^{\prime}$ plane.
(iv) Find the eccentricity of the conic section

QUESTION 5(20 MARKS)

a) Sketch and give the name of the polar curves $r=1+4 \cos \theta$
b) Identify the conic sections given below

$$
\begin{array}{ll}
\text { i) } 4 x^{2}-4 x y+y^{2}-5 \sqrt{5} x+5=0 & \text { iii) } r=\frac{4}{2-2 \cos \theta} \tag{6marks}\\
\text { ii) } 3 x^{2}-4 \sqrt{3} x y-y^{2}=24 & \text { iv) } r(8+6 \sin \theta)=0
\end{array}
$$

c) A parabola has the y-intercepts -1 and 2 while the x-intercept is 4 Find
(i) The equation of the parabola
(ii) The equation of the axis of the parabola
(iii) The vertex and focus of the parabola
(iv) The equation of the directrix of the parabola

