

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL

4TH YEAR SPECIAL RESITS – 2016 MAIN REGULAR

RESIT

COURSE CODE: SMA 202

COURSE TITLE: VECTOR ANALYSIS

EXAM VENUE: LAB 1 STREAM: (BSc. Actuarial)

DATE: 06/05/2016 EXAM SESSION: 2.00 – 4.00 PM

TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions

- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY)

- a) Given $\vec{r}_1 = 3i 2j + k$, $\vec{r}_2 = 2i 4j 3k$, $\vec{r}_3 = -i + 2j + 2k$, find the magnitude of $2r_1 3r_2 5r_3$. (5 marks)
- b) Find a unit vector parallel to the resultant vectors $\mathbf{r}_1 = 2\mathbf{i} + 4\mathbf{j} 5\mathbf{k}$, $\mathbf{r}_2 = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$. (5 marks)
- c) Given the scalar field defined by $\phi(x, y, z) = 3x^2z xy^3 + 5$, find ϕ at the point (2, -2, 1).
- d) Find the angle between vectors $\vec{P} = 2i + 2j k$ and $\vec{Q} = 6i 3j + 2k$. (6 marks)
- e) If $\vec{S} = 2i 3j k$ and $\vec{T} = i + 4j 2k$, find $|\vec{S} \times \vec{T}|$. (5 marks)
- f) Given $\vec{R} = \cos t \vec{i} + \sin t \vec{j} + 2t \vec{k}$, find $\left| \frac{d^2 \vec{R}}{dt^2} \right|$. (5 marks)

QUESTION TWO

- a) Determine a unit vector parallel to the plane of $\vec{P} = 2i 6j 3k$ and $\vec{Q} = 4i + 3j k$.

 (6 marks)
- b) If $\vec{A} = \vec{i} 2\vec{j} 3\vec{k}$, $\vec{B} = 2\vec{i} + \vec{j} \vec{k}$ and $\vec{C} = \vec{i} + 3\vec{j} 2\vec{k}$ find $|\vec{A} \times (\vec{B} \times \vec{C})|$. (6 marks)
- c) Evaluate $(2\underline{i} + \underline{j} \underline{k}) \times (3\underline{i} 2\underline{j} + 4\underline{k})$. (4 marks)
- d) Find the projection of the vector 2i 3j + 6k on the vector i + 2j + 2k. (4 marks)

QUESTION THREE

- a) If $\vec{Q} = 5t^2 \vec{i} + t \vec{j} t^3 \vec{k}$ and $R = \sin t \vec{i} \cos t \vec{j}$, find $\frac{d}{dt} (\vec{Q} \times \vec{R})$. (6 marks)
- b) If $\vec{E} = (2x^2y x^4)\hat{i} + (e^{xy} y\sin x)\hat{j} + (x^2\cos y)\hat{k}$, find $\frac{\partial^2 \vec{E}}{\partial y \partial x}$ at the point (1, -1, 2).
- c) Find the unit tangent vector to any point on the curve $x = a \cos \omega t$, $y = a \sin \omega t$, z = bt where a, b, ω are constants. (4 marks)
- d) If $\phi(x, y, z) = x^2 yz$ and $\vec{F} = xz\underline{i} xy^2\underline{j} + yz^2\underline{k}$, find $\frac{\partial^3}{\partial x \partial y \partial z} (\phi \vec{F})$ at the point (2, -1, 1).

 (5 marks)

OUESTION FOUR

- a) Find $\nabla |\underline{r}|^3$. (4 marks)
- b) If $\vec{F} = (3x^2y z)\underline{i} + (xz^3 + y^4)\underline{j} 2x^3z^2\underline{k}$, find $\nabla(\nabla\Box\vec{F})$ at the point (-1,2,0). (6 marks)

c) If
$$P = x^2 yz$$
, $Q = xy - 3z^2$, find $\nabla \times \lceil (\nabla P) \times (\nabla Q) \rceil$. (6 marks)

d) Find the unit outward drawn normal to the surface $(x-1)^2 + y^2 + (z+1)^2 = 9$ at the point (3,-1,4).

QUESTION FIVE

a) If
$$\vec{P} = (4x^2 + 5y)i - 12yzj + 10xz^2k$$
, evaluate $\int_c \vec{P} \Box dr$ from $(0,0,0)$ to $(1,1,1)$ along the

following path c:

i.
$$x = t$$
, $y = t^2$, $z = t^3$; (4 marks)

- ii. the straight line from (0,0,0) to (1,0,0) then to (1,1,0) and then to (1,1,1);
 . (4 marks)
- iii. the straight line joining (0,0,0) and (1,1,1). (4 marks)
- b) Evaluate $\iint_{S} \vec{F} \cdot nds$, where $\vec{F} = z\vec{i} + x\vec{j} 3y^{2}z\vec{k}$ and S is the surface of the cylinder $x^{2} + y^{2} = 16$ included in the first octant between z = 0 and z = 5. (8 marks)