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JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY  

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE 

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF   SCIENCE 
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DATE:  04/05/16          EXAM SESSION: 2.00 – 4.00 PM 
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Instructions: 

1. Answer question 1 (Compulsory) and ANY other 2 questions  

2. Candidates are advised not to write on the question paper. 

3. Candidates must hand in their answer booklets to the invigilator while in the  

examination room. 
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QUESTION ONE (COMPULSORY) – 30 MARKS 

a) Define each of the following terms as used in complex analysis 

i) Disk 

ii) Deleted neighbourhood 

iii)  Argument 

iv) Limits of a complex function     (8 marks) 

b) Express i322  in polar form using the principal argument. (2 marks) 

c) Evaluate the integral dz
z

z

c

 162
, where C is the circle 42  iz  using the 

Cauchy’s integral formular.      (4 marks) 

d) Compute the nth root for the  2

1

32 i , hence sketch an appropriate circle 

indicating the roots w0 and  w1,.     (4 marks) 

e) Sketch the set S denoted by the inequality 332  iz .  (4 marks) 

f) Find the image of a line x = 1 under the complex mapping 2zw   for w,zC, 

hence sketch the line and its image under the mapping   (4 marks) 

g) Evaluate the line integral   
c

ydydxxI 22  where  C comprises the triangle 

O(0,0), A(2,1) and  C(1,3)      (4 marks) 

QUESTION TWO (20 MARKS) 

a) Prove that if a complex function ),(),()( yxivyxuzf   is analytic at any point 

z, and in the domain D,then the Laplace’s equation 0
2

2

2

2











y

u

x

u
, can be 

verified.         (7 marks) 

b) Find the derivative of 
iz

izz





42

22

      (3 marks) 
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c) Solve for w, given the complex function ie
w

 3  for w, C. (6 marks) 

d) Compute the principal value of the complex logarithm zln for iz 1  

           (4 marks) 

 

QUESTION THREE (20 MARKS) 

a) State De-Moivre’s theorem hence use it to  evaluate  61 i , giving your 

answer in the form bia  , ba, R     (7 marks) 

b) Find an upper bound for  the reciprocal of 154  zz ,given that 2z .  

          (5 marks) 

c) Use the definition of the derivative of a complex function to determine the 

derivative of 
Z

zf
1

)(   in the region where the derivative exists.   

         (5 marks) 

d) Evaluate 
4

1

3

2













i

i
, giving all your answers in polar form.  (6 marks) 

 

QUESTION FOUR (20 MARKS) 
a) Find the value of ii        (4 marks) 

b) Given that  sincos ie i  for any real number  , prove that 
zize iz sincos   for any complex number z.   (6 marks) 

c) Evaluate  dz
z

1
, where  Cis the circle tx cos , tx sin  for 20  t  

          (4 marks) 

d) State the Cauchy’s integral formular for derivatives hence evaluate  

 


2

2

)(

3

izz

z
       (6 marks) 

QUESTION FIVE (20 MARKS) 
a) Find the real numbers p and q for which the complex numbers biaz   and 

iaw
b
1  are equal given that w,zC.     (3 marks) 

b) Show that the function 2222 63)( yixyxzf  is not analytic at any point but 

differentiable along the coordinate axes.    (6 marks) 

c) Use L’Hopital’s rule to compute 

 lim
𝑧→1+𝑖

𝑧5+4𝑧

𝑧2−2𝑧+2
         (5 marks) 

d) Given the complex function ),(),()( yxivyxuzf  , verify that the function 

xyxyxu 22),(  , hence find ),( yxv the harmonic conjugate u,Hence find the 

corresponding analytic function ivuzf )( .    (6 marks) 


