

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL

SPECIAL RESIT 2015/2016 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: SMA 301

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION I

EXAM VENUE: STREAM: (BSc. Actuarial)

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions

2. Candidates are advised not to write on the question paper.

3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY)

- a) Given $y = A \sin x + B \cos x$, where A and B and arbitrary constants, eliminate the arbitrary constants to form a differential equation hence state its order and degree. (5 marks)
- b) The rate of cooling of a body is proportional to the excess of its temperature above its surrounding θ^0 C. A body cools from 85°C to 65°C in 4.0 minutes at a surrounding temperature of 15°C. Determine how long to the nearest second the body will take to cool to 55°C. (4 marks)
- c) Solve the differential equation below using an appropriate method

$$\frac{d^2y}{dx^2} + 36y = 0 \tag{5 marks}$$

d) Using an appropriate method solve the differential equation 2yy'' = 1 + y'.

(5 marks)

e) Use the method of variation of parameters to solve $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = e^{2x}$.

(5 marks)

f) Solve the differential equation (y-2x-4)dy = (y+2x-2)dx (6 marks)

QUESTION TWO (20 marks)

a) By finding the integrating factor, find the general solution of the differential equation

$$\frac{(1-x^2)}{x}\frac{dy}{dx} + \frac{2x^2 - 1}{x^2}y = x \text{ (Hint: Use partial fractions)}$$
 (10 marks)

b) A resistance (R) of 100 ohms, an inductance (L) of 0.5 henry are connected in series with a battery of 20 volts(V). Find the current (i) in the circuit as a function of time(t) given that they

are connected by the differential equation $Ri + L\frac{di}{dt} = V$. (5 marks)

c) Solve the differential equation below using any appropriate method

$$4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = e^x.$$
 (5 marks)

QUESTION THREE

a) Consider a second order differential equation

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = F(x)$$

Let F(x) = 0 and let y = U and y = V, where U and V are functions of x be two solutions to the differential equation, then show that y = (U + V) is also a solution.

(6 marks)

b) Find the general solution of the differential equations

(i)
$$(xy - x^2)dy + y^2dx = 0$$
 (4 marks)

$$(ii) \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$$
 (4 marks)

(iii)
$$\frac{d^2y}{dx^2} - 36y = 2\cos 4x$$
 (4 marks)

QUESTION FOUR

Use any appropriate method to solve each of the differential equations below

(a)
$$(2-9xy^2)xdx + (4y^2 - 6x^3)ydy = 0$$
 given that $y = 4$ when $x = 1$. (6 marks)

b)
$$yy'' + (y')^2 = 0$$
 (6 marks)

c)
$$\frac{dy}{dx} + \frac{x}{1 - x^2} y = x\sqrt{y}$$
 (8 marks)

QUESTION FIVE

- a) Detectives discovered a murder victim at 6.30 am and the body temperature of the victim was then 26 0 C. After 30 minutes the police surgeon arrived and found the body temperature to be 23 0 C. If the air temperature was 16 0 C throughout and the normal body temperature is 37 0 C. At what time did the police surgeon estimate that the crime occurred. (10 marks)
- b) Solve the differential equation $xy'' = y' + (y')^3$ given x = 1 when y = 0 and x = 2 when $\frac{dy}{dx} = 1$ (10 marks)