BONDO UNIVERSITY COLLEGE

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION 2012
SECOND YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE) WITH IT

SPH 205: MATHEMATICAL METHODS FOR PHYSICS II

INSTRUCTION

1. Answer question ONE in SECTION A and any other TWO questions from SECTION B.
2. Question ONE in SECTION A carries $\mathbf{3 0}$ MARKS and the questions in SECTION B carry 20 MARKS each.

Take where necessary

$$
e^{z}=\sum \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2!}+\ldots
$$

$$
|z|<\infty
$$

SECTION A. Answer ALL questions in this section (30 marks).

QUESTION ONE

1.(a) Show that the matrices $\mathbf{A}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \mathbf{B}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ satisfy the commutation relation $[\mathbf{A}, \mathbf{B}]=\mathbf{C}$.
(b) Solve the differential equation $d y / d x=x y^{2}$.
(3 marks)
(c) Given matrix A, find A^{*}, A^{T} and A^{+}, where

$$
A=\left(\begin{array}{cccc}
2+3 i & 1-i & 5 i & -3 \\
1+i & 6-i & 1+3 i & -1-2 i \\
5-6 i & 3 & 6 & -4
\end{array}\right)
$$

(d) Show that $|W\rangle=(4,-1,8)$ is not a linear combination of $|U\rangle=(1,2,-1)$ and $|V\rangle=(6,4,2)$.
(e) Given $z=x+i y$, find $\cos z$.
(f) Evaluate $(1+i)^{4}$.
(g) A radioactive isotope decays in such a way that the number of atoms present at a given time $N(t)$, obeys the equation

$$
\frac{d N}{d t}=-\lambda N .
$$

If there are initially N_{0} atoms present, find $N(t)$ at later times.
(3 marks)
(h) Find the eigenvalue and eigenvector of the matrix

$$
A=\left(\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right)
$$

(i) Show that the function $f(z)=1 / z-2$ is analytic everywhere except at $z=2$ (3 marks)
(j) Show that the equation $x d y / d x+(x+y)=0$ is exact and find its general solution.

SECTION B. Answer any TWO questions.

QUESTION TWO

2 (a) Show that $(\mathbf{A B})^{+}=\mathbf{B}^{+} \mathbf{A}^{+}$
(6 marks)
(b) Given the Pauli spin matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

where $i^{2}=-1$. Show that
(i) they are Hermitian
(4 marks)
(ii) $\sigma_{i}^{2}=\mathbf{I} ; \quad i=x, y, z . \mathbf{I}$ is the identity operator.
(3 marks)
(iii) $\left[\sigma_{x}, \sigma_{z}\right]=-2 i \sigma_{y}$ (4 marks)
(c) If \mathbf{A} and \mathbf{B} are square matrix of the same order, then $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$. Verify this theorem if

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -1 \tag{3marks}\\
3 & 2
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{cc}
7 & 2 \\
-3 & 4
\end{array}\right)
$$

QUESTION THREE

3. (a) (i) Determine whether the set three vectors $|1\rangle=(2,-1,0,3),|2\rangle=(1,2,0,3)$ and $|3\rangle=(7,-1,5,3)$ are linearly dependent or independent.
(5 marks)
(ii) Determine whether the set S of the four matrices $|1\rangle=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),|2\rangle=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $|3\rangle=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $|4\rangle=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are linearly dependent or independent.
(3 marks)
(b) Expand the vector $|U\rangle=\left(\frac{1+i}{\sqrt{3}+i}\right)$ in orthonormal basis $\left|e_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\left|e_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}$.
(c) Let $|U\rangle=(3-4 i) 1\rangle+(5-6 i)|2\rangle$ and $|W\rangle=(1-i) 1\rangle+(2-3 i) 2\rangle$ be set of two vectors expanded in terms of an orthonormal basis $|1\rangle$ and $|2\rangle$.
(i) Evaluate $\langle U \mid U\rangle$
(ii) Show that $\langle U \mid W\rangle=\langle W \mid U\rangle^{*}$

QUESTION FOUR

4. (a) (i) Derive De Moivre's theorem for roots of complex numbers.
(4 marks)
(ii) If $z=e^{i \theta}$, use De Moivre's theorem to show that

$$
\begin{equation*}
z^{n}-\frac{1}{z^{n}}=2 i \sin (n \theta) \tag{4marks}
\end{equation*}
$$

(b) (i) Deduce the Cauchy-Riemann condition for the analyticity of a complex function $f(z)=u(x, y)+i v(x, y)$.
(ii) Given the following functions;

$$
e^{3 z}(z+1)^{-3}
$$

find the Laurent series about the singularity for the functions, name the singularity, and give the region of convergence.
(5 marks)

QUESTION FIVE

5. (a) A typical RC circuit is shown in figure 1.

(i) Find the current $I(t)$ in the circuit as a function of time.
(ii) A solenoid has an inductance of 53 mH and a resistance of 0.37Ω. If the solenoid is connected to a battery, how long will the current take to reach half its final equilibrium value?
(3 marks)
(b) (i) State four condition that a function must fulfill in order that it may be expanded as a Fourier series.
(ii) Develop the Fourier series representation of

$$
f(t)=\left\{\begin{array}{l}
-1 \text { for } 1 / 2 T \leq t<0 \\
-1 \text { for } 0 \leq t<1 / 2 T
\end{array}\right.
$$

This is the square wave function which represents the input to an electrical circuit that switches between a high and a low state with time period T.
(5 marks)

